高二数学必修五的必掌握知识点归纳


    虽然学习目标会容易达到,但学习成就感也就越弱。因此,你在高二时期的学习目标,应该结合自己的实际,采取适当的学习行为,使自己的学习目标在经过自己的努力之后能够得以实现。以下是小编给大家整理的高二数学必修五的必掌握知识点归纳,希望能帮助到你!
    高二数学必修五的必掌握知识点归纳1
    1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.
    2、圆的方程
    (1)标准方程,圆心,半径为r;
    (2)一般方程
    当时,方程表示圆,此时圆心为,半径为
    当时,表示一个点;当时,方程不表示任何图形.
    (3)求圆方程的方法:
    一般都采用待定系数法:先设后求.确定一个圆需要三个独立条件,若利用圆的标准方程,
    需求出a,b,r;若利用一般方程,需要求出D,E,F;
    另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置.
    3、高中数学必修二知识点总结:直线与圆的位置关系:
    直线与圆的位置关系有相离,相切,相交三种情况:
    (1)设直线,圆,圆心到l的距离为,则有;;
    (2)过圆外一点的切线:k不存在,验证是否成立k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】
    (3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2
    4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.
    设圆,
    两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.
    当时两圆外离,此时有公切线四条;
    当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;
    当时两圆相交,连心线垂直平分公共弦,有两条外公切线;
    当时,两圆内切,连心线经过切点,只有一条公切线;
    当时,两圆内含;当时,为同心圆.
    注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线
    5、空间点、直线、平面的位置关系
    公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内.
    应用:判断直线是否在平面内
    用符号语言表示公理1:
    公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线
    符号:平面α和β相交,交线是a,记作α∩β=a.
    符号语言:
    公理2的作用:
    它是判定两个平面相交的方法.
    它说明两个平面的交线与两个平面公共点之间的关系:交线公共点.
    它可以判断点在直线上,即证若干个点共线的重要依据.
    公理3:经过不在同一条直线上的三点,有且只有一个平面.
    推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面.
    公理3及其推论作用:它是空间内确定平面的依据它是证明平面重合的依据
    公理4:平行于同一条直线的两条直线互相平行
    高二数学必修五的必掌握知识点归纳2
    函数的单调性、奇偶性、周期性
    单调性:定义:注意定义是相对与某个具体的区间而言。
    判定方法有:定义法(作差比较和作商比较)
    导数法(适用于多项式函数)
    复合函数法和图像法。
    应用:比较大小,证明不等式,解不等式。
    奇偶性:
    定义:注意区间是否关于原点对称,比较f(x)与f(-x)的关系。f(x)-f(-x)=0f(x)=f(-x)f(x)为偶函数;
    f(x)+f(-x)=0f(x)=-f(-x)f(x)为奇函数。
    判别方法:定义法,图像法,复合函数法
    应用:把函数值进行转化求解。
    周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期。
    其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期.
    应用:求函数值和某个区间上的函数解析式。
    四、图形变换:函数图像变换:(重点)要求掌握常见基本函数的图像,掌握函数图像变换的一般规律。
    常见图像变化规律:(注意平移变化能够用向量的语言解释,和按向量平移联系起来思考)
    平移变换y=f(x)→y=f(x+a),y=f(x)+b
    注意:(ⅰ)有系数,要先提取系数。如:把函数y=f(2x)经过平移得到函数y=f(2x+4)的图象。
    (ⅱ)会结合向量的平移,理解按照向量(m,n)平移的意义。
    对称变换y=f(x)→y=f(-x),关于y轴对称
    y=f(x)→y=-f(x),关于x轴对称
    y=f(x)→y=f|x|,把x轴上方的图象保留,x轴下方的图象关于x轴对称
    y=f(x)→y=|f(x)|把y轴右边的图象保留,然后将y轴右边部分关于y轴对称。(注意:它是一个偶函数)
    伸缩变换:y=f(x)→y=f(ωx),
    y=f(x)→y=Af(ωx+φ)具体参照三角函数的图象变换。
    一个重要结论:若f(a-x)=f(a+x),则函数y=f(x)的图像关于直线x=a对称;
    高二数学必修五的必掌握知识点归纳3
    复合函数定义域
    若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数y=f[g(x)]的定义域是D={x|x∈A,且g(x)∈B}综合考虑各部分的x的取值范围,取他们的交集。
    求函数的定义域主要应考虑以下几点:
    ⑴当为整式或奇次根式时,R的值域;
    ⑵当为偶次根式时,被开方数不小于0(即≥0);
    ⑶当为分式时,分母不为0;当分母是偶次根式时,被开方数大于0;
    ⑷当为指数式时,对零指数幂或负整数指数幂,底不为0。
    ⑸当是由一些基本函数通过四则运算结合而成的,它的定义域应是使各部分都有意义的自变量的值组成的集合,即求各部分定义域集合的交集。
    ⑹分段函数的定义域是各段上自变量的取值集合的并集。
    ⑺由实际问题建立的函数,除了要考虑使解析式有意义外,还要考虑实际意义对自变量的要求
    ⑻对于含参数字母的函数,求定义域时一般要对字母的取值情况进行分类讨论,并要注意函数的定义域为非空集合。
    ⑼对数函数的真数必须大于零,底数大于零且不等于1。
    ⑽三角函数中的切割函数要注意对角变量的限制。
    复合函数常见题型
    (ⅰ)已知f(x)定义域为A,求f[g(x)]的定义域:实质是已知g(x)的范围为A,以此求出x的范围。
    (ⅱ)已知f[g(x)]定义域为B,求f(x)的定义域:实质是已知x的范围为B,以此求出g(x)的范围。
    (ⅲ)已知f[g(x)]定义域为C,求f[h(x)]的定义域:实质是已知x的范围为C,以此先求出g(x)的范围(即f(x)的定义域);然后将其作为h(x)的范围,以此再求出x的范围。