高三数学上册的知识点以及重难点


    .有的同学只重视解题的数量而轻视质量,表现在做题后不问对错,错了不仅要改,还要记下来,分析造成错误的原因和启示,尤其是考试试卷更要注意.只有经过不断的改正错误,日积月累,才能提高.以下是小编给大家整理的高三数学上册的知识点以及重难点,希望大家能够喜欢!
    高三数学上册的知识点以及重难点1
    (1)不等关系
    感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景。
    (2)一元二次不等式
    ①经历从实际情境中抽象出一元二次不等式模型的过程。
    ②通过函数图象了解一元二次不等式与相应函数、方程的联系。
    ③会解一元二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图。
    (3)二元一次不等式组与简单线性规划问题
    ①从实际情境中抽象出二元一次不等式组。
    ②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组(参见例2)。
    ③从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决(参见例3)。
    (4)基本不等式:。
    ①探索并了解基本不等式的证明过程。
    ②会用基本不等式解决简单的(小)值问题。
    高三数学上册的知识点以及重难点2
    复数中的难点
    (1)复数的向量表示法的运算.对于复数的向量表示有些学生掌握得不好,对向量的运算的几何意义的灵活掌握有一定的困难.对此应认真体会复数向量运算的几何意义,对其灵活地加以证明.
    (2)复数三角形式的乘方和开方.有部分学生对运算法则知道,但对其灵活地运用有一定的困难,特别是开方运算,应对此认真地加以训练.
    (3)复数的辐角主值的求法.
    (4)利用复数的几何意义灵活地解决问题.复数可以用向量表示,同时复数的模和辐角都具有几何意义,对他们的理解和应用有一定难度,应认真加以体会.
    3.复数中的重点
    (1)理解好复数的概念,弄清实数、虚数、纯虚数的不同点.
    (2)熟练掌握复数三种表示法,以及它们间的互化,并能准确地求出复数的模和辐角.复数有代数,向量和三角三种表示法.特别是代数形式和三角形式的互化,以及求复数的模和辐角在解决具体问题时经常用到,是一个重点内容.
    (3)复数的三种表示法的各种运算,在运算中重视共轭复数以及模的有关性质.复数的运算是复数中的主要内容,掌握复数各种形式的运算,特别是复数运算的几何意义更是重点内容.
    (4)复数集中一元二次方程和二项方程的解法.
    高三数学上册的知识点以及重难点3
    1. 满足二元一次不等式(组)的x和y的取值构成有序数对(x,y),称为二元一次不等式(组)的一个解,所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集。
    2. 二元一次不等式(组)的每一个解(x,y)作为点的坐标对应平面上的一个点,二元一次不等式(组)的解集对应平面直角坐标系中的一个半平面(平面区域)。
    3. 直线l:Ax+By+C=0(A、B不全为零)把坐标平面划分成两部分,其中一部分(半个平面)对应二元一次不等式Ax+By+C>0(或≥0),另一部分对应二元一次不等式Ax+By+C<0(或≤0)。
    4. 已知平面区域,用不等式(组)表示它,其方法是:在所有直线外任取一点(如本题的原点(0,0)),将其坐标代入Ax+By+C,判断正负就可以确定相应不等式。
    5. 一个二元一次不等式表示的平面区域是相应直线划分开的半个平面,一般用特殊点代入二元一次不等式检验就可以判定,当直线不过原点时常选原点检验,当直线过原点时,常选(1,0)或(0,1)代入检验,二元一次不等式组表示的平面区域是它的各个不等式所表示的平面区域的公共部分,注意边界是实线还是虚线的含义。“线定界,点定域”。
    6. 满足二元一次不等式(组)的整数x和y的取值构成的有序数对(x,y),称为这个二元一次不等式(组)的一个解。所有整数解对应的点称为整点(也叫格点),它们都在这个二元一次不等式(组)表示的平面区域内。
    7. 画二元一次不等式Ax+By+C≥0所表示的平面区域时,应把边界画成实线,画二元一次不等式Ax+By+C>0所表示的平面区域时,应把边界画成虚线。
    8. 若点P(x0,y0)与点P1(x1,y1)在直线l:Ax+By+C=0的同侧,则Ax0+By0+C与Ax1+Byl+C符号相同;若点P(x0,y0)与点P1(x1,y1)在直线l:Ax+By+C=0的两侧,则Ax0+By0+C与Ax1+Byl+C符号相反。
    9. 从实际问题中抽象出二元一次不等式(组)的步骤是:
    (1)根据题意,设出变量;
    (2)分析问题中的变量,并根据各个不等关系列出常量与变量x,y之间的不等式;
    (3)把各个不等式连同变量x,y有意义的实际范围合在一起,组成不等式组。