高三数学小细节知识点


    天天都是一个出发点,每天都有一点提高,每天都有一点收成!抢时间,抓基础,勤演练定有收获;树自信,誓拼搏,升大学回报父母。这是高三学子现在最应该做的事情,以下是小编给大家整理的高三数学小细节知识点,希望能帮助到你!
    高三数学小细节知识点1
    1、直线的倾斜角
    定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°
    2、直线的斜率
    ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。
    ②过两点的直线的斜率公式:
    注意下面四点:
    (1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
    (2)k与P1、P2的顺序无关;
    (3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
    (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
    3、直线方程
    点斜式:
    直线斜率k,且过点
    注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。
    高三数学小细节知识点2
    一个推导
    利用错位相减法推导等比数列的前n项和:
    Sn=a1+a1q+a1q2+…+a1qn-1,
    同乘q得:qSn=a1q+a1q2+a1q3+…+a1qn,
    两式相减得(1-q)Sn=a1-a1qn,∴Sn=(q≠1).
    两个防范
    (1)由an+1=qan,q≠0并不能立即断言{an}为等比数列,还要验证a1≠0.
    (2)在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形导致解题失误.
    三种方法
    等比数列的判断方法有:
    (1)定义法:若an+1/an=q(q为非零常数)或an/an-1=q(q为非零常数且n≥2且n∈N_),则{an}是等比数列.
    (2)中项公式法:在数列{an}中,an≠0且a=an·an+2(n∈N_),则数列{an}是等比数列.
    (3)通项公式法:若数列通项公式可写成an=c·qn(c,q均是不为0的常数,n∈N_),则{an}是等比数列.
    注:前两种方法也可用来证明一个数列为等比数列.
    高三数学小细节知识点3
    1、三类角的求法:
    ①找出或作出有关的角。
    ②证明其符合定义,并指出所求作的角。
    ③计算大小(解直角三角形,或用余弦定理)。
    2、正棱柱——底面为正多边形的直棱柱
    正棱锥——底面是正多边形,顶点在底面的射影是底面的中心。
    正棱锥的计算集中在四个直角三角形中:
    3、怎样判断直线l与圆C的位置关系?
    圆心到直线的距离与圆的半径比较。
    直线与圆相交时,注意利用圆的“垂径定理”。
    4、对线性规划问题:作出可行域,作出以目标函数为截距的直线,在可行域内平移直线,求出目标函数的最值。
    不看后悔!清华名师揭秘学好高中数学的方法