网站首页  汉语字词  英语词汇  考试资料  写作素材  旧版资料

请输入您要查询的范文:

 

标题 北师大版七年级下册数学复习提纲
范文
    数学是非常重要的科目,但是很多人的数学成绩怎么都提不上去,你是不是很需要一份数学复习提纲呢?下面小编给大家分享一些北师大版七年级下册数学复习提纲,希望能够帮助大家,欢迎阅读!
    
    北师大版七年级下册数学复习提纲
    一、单项式
    1、都是数字与字母的乘积的代数式叫做单项式。
    2、单项式的数字因数叫做单项式的系数。
    3、单项式中所有字母的指数和叫做单项式的次数。
    4、单独一个数或一个字母也是单项式。
    5、只含有字母因式的单项式的系数是1或―1。
    6、单独的一个数字是单项式,它的系数是它本身。
    7、单独的一个非零常数的次数是0。
    8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
    9、单项式的系数包括它前面的符号。
    10、单项式的系数是带分数时,应化成假分数。
    11、单项式的系数是1或―1时,通常省略数字“1”。
    12、单项式的次数仅与字母有关,与单项式的系数无关。
    二、多项式
    1、几个单项式的和叫做多项式。
    2、多项式中的每一个单项式叫做多项式的项。
    3、多项式中不含字母的项叫做常数项。
    4、一个多项式有几项,就叫做几项式。
    5、多项式的每一项都包括项前面的符号。
    6、多项式没有系数的概念,但有次数的概念。
    7、多项式中次数的项的次数,叫做这个多项式的次数。
    三、整式
    1、单项式和多项式统称为整式。
    2、单项式或多项式都是整式。
    3、整式不一定是单项式。
    4、整式不一定是多项式。
    5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。
    四、整式的加减
    1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
    2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。
    3、几个整式相加减的一般步骤:
    (1)列出代数式:用括号把每个整式括起来,再用加减号连接。
    (2)按去括号法则去括号。
    (3)合并同类项。
    4、代数式求值的一般步骤:
    (1)代数式化简。
    (2)代入计算
    (3)对于某些特殊的代数式,可采用“整体代入”进行计算。
    五、同底数幂的乘法
    1、n个相同因式(或因数)a相乘,记作an,读作a的n次方(幂),其中a为底数,n为指数,an的结果叫做幂。
    2、底数相同的幂叫做同底数幂。
    3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:am﹒an=am+n。
    4、此法则也可以逆用,即:am+n=am﹒an。
    5、开始底数不相同的幂的乘法,如果可以化成底数相同的幂的乘法,先化成同底数幂再运用法则。
    六、幂的乘方
    1、幂的乘方是指几个相同的幂相乘。(am)n表示n个am相乘。
    2、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。(am)n=amn。
    3、此法则也可以逆用,即:amn=(am)n=(an)m。
    七、积的乘方
    1、积的乘方是指底数是乘积形式的乘方。
    2、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。即(ab)n=anbn。
    3、此法则也可以逆用,即:anbn=(ab)n。
    八、三种“幂的运算法则”异同点
    1、共同点:
    (1)法则中的底数不变,只对指数做运算。
    (2)法则中的底数(不为零)和指数具有普遍性,即可以是数,也可以是式(单项式或多项式)。
    (3)对于含有3个或3个以上的运算,法则仍然成立。
    2、不同点:
    (1)同底数幂相乘是指数相加。
    (2)幂的乘方是指数相乘。
    (3)积的乘方是每个因式分别乘方,再将结果相乘。
    九、同底数幂的除法
    1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:am÷an=am-n(a≠0)。
    2、此法则也可以逆用,即:am-n=am÷an(a≠0)。
    十、零指数幂
    1、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a0=1(a≠0)。
    十一、负指数幂
    1、任何不等于零的数的―p次幂,等于这个数的p次幂的倒数,即:
    注:在同底数幂的除法、零指数幂、负指数幂中底数不为0。
    十二、整式的乘法
    (一)单项式与单项式相乘
    1、单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
    2、系数相乘时,注意符号。
    3、相同字母的幂相乘时,底数不变,指数相加。
    4、对于只在一个单项式中含有的字母,连同它的指数一起写在积里,作为积的因式。
    5、单项式乘以单项式的结果仍是单项式。
    6、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。
    (二)单项式与多项式相乘
    1、单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。即:m(a+b+c)=ma+mb+mc。
    2、运算时注意积的符号,多项式的每一项都包括它前面的符号。
    3、积是一个多项式,其项数与多项式的项数相同。
    4、混合运算中,注意运算顺序,结果有同类项时要合并同类项,从而得到最简结果。
    (三)多项式与多项式相乘
    1、多项式与多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。即:(m+n)(a+b)=ma+mb+na+nb。
    2、多项式与多项式相乘,必须做到不重不漏。相乘时,要按一定的顺序进行,即一个多项式的每一项乘以另一个多项式的每一项。在未合并同类项之前,积的项数等于两个多项式项数的积。
    3、多项式的每一项都包含它前面的符号,确定积中每一项的符号时应用“同号得正,异号得负”。
    4、运算结果中有同类项的要合并同类项。
    5、对于含有同一个字母的一次项系数是1的两个一次二项式相乘时,可以运用下面的公式简化运算:(x+a)(x+b)=x2+(a+b)x+ab。
    十三、平方差公式
    1、(a+b)(a-b)=a2-b2,即:两数和与这两数差的积,等于它们的平方之差。
    2、平方差公式中的a、b可以是单项式,也可以是多项式。
    3、平方差公式可以逆用,即:a2-b2=(a+b)(a-b)。
    4、平方差公式还能简化两数之积的运算,解这类题,首先看两个数能否转化成
    (a+b)?(a-b)的形式,然后看a2与b2是否容易计算。
    数学学习困难的原因
    1、学习自觉性较差
    初中生学习自觉性较差,缺少解题的积极性,解题时不注重步骤、过程。
    2、学习意志薄弱
    数学的逻辑性和抽象性很强,知识间联系紧密,对学生的灵活应用能力,分析能力要求很强。如果学生对前面所学的知识掌握不好或未理解的话,就会直接影响深一层次内容的学习,造成知识脱节,跟不上集体学习的进程,在加在自身的毅力薄弱。其结果往往就会产生厌学情绪,放弃数学的学习。
    3、无兴趣学习或兴趣低
    一部分学生一开始就没有学好数学,导致基础不好,久而久之导致恶性循环;还有些学生认为学数学没用,选择放弃选读,因此成绩变得连“过得去”也难以维持。
    4、没有养成良好的数学学习习惯
    有些学生边学边玩,注意力不集中,或是思维单一,不能横向思考或纵深思考;又或者不听不记,思维懒惰,粗心大意、马虎等等都是造成错误率高的重要原因。
    所以同学们要注意自己是否存在以上问题,要想办法及时解决。
    初中女生学好数学需要养成这些好习惯
    课前需要提前预习
    初中数学课前要把老师要讲授的内容先预习一遍,对于不懂的问题要加以标注。在老师授课的过程中,带着疑惑去听讲,会加深印象。容易掌握。
    课堂上要学会认真听讲
    课堂上要学会跟进老师的思路,积极展开思维,巩固知识要点,不要不懂装懂。抓住基础知识的学习。当堂课程要当堂消化。
    课后要及时的复习
    课后要积极的完成作业,要掌握各类公式的推理过程。要勤于思考,善于归纳知识点。对于不懂的问题,一定要弄懂弄明白,课后复习不要留下疑点。
    
随便看

 

在线学习网范文大全提供好词好句、学习总结、工作总结、演讲稿等写作素材及范文模板,是学习及工作的有利工具。

 

Copyright © 2002-2024 cuapp.net All Rights Reserved
更新时间:2025/5/15 14:51:13