五年级数学苏教版知识点概况总结


    学习,需要不断的重复重复,重复学过的知识,加深印象,其实任何科目的学习方法都是不断重复学习。下面小编为大家带来五年级数学苏教版知识点概况总结,希望大家喜欢!
    
    五年级数学苏教版知识点
    第一单元解方程时常用的关系式
    一个加数=和-另一个加数减数=被减数-差被减数=减数+差
    一个因数=积÷另一个因数除数=被除数÷商被除数=商×除数
    注意:解完方程,要养成检验的好习惯。
    6、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。奇数个连续的自然数(或连续的奇数,连续的偶数)的和÷个数=中间数
    7、4个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间两个数或首尾两个数的和×个数÷2(高斯求和公式)
    8、列方程解应用题的思路:a、审题并弄懂题目的已知条件和所求问题。b、理清题目的等量关系。c、设未知数,一般是把所求的数用x表示。d、根据等量关系列出方程e、解方程f、检验g、作答。
    第二单元确定位置
    1、确定位置时,竖排叫做列,横排叫做行。确定第几列一般从左往右数,确定第几行一般从前往后数。
    2、数对(x,)第1个数表示第几列(x),第2个数表示第几行(),写数对时,是先写列数,再写行数。
    3、从地球仪上看,连接北极和南极两点的是经线,垂直于经线的线圈是纬线,经线和纬线、分别按一定的顺序编排表示“经度”和“纬度”,“经度”和“纬度”都用度(°)、分(′)、秒(″)表示。
    4、将某个点向左右平移几格,只是列(x)上的数字发生加减变化,向左减,向右加,行()上的数字不变。举例:将点(6,3)的位置向右平移2个单位后的位置是(8,3),列6+2=8;将点(6,3)的位置向左平移2个单位后的位置是(4,3),列6-2=4。
    5、将某个点向上下平移几格,只是行()上的数字发生加减变化,向上减,向下加,列(x)上的数字不变。举例:将点(6,3)的位置向上平移2个单位后的位置是(6,5),行3+2=5;将点(6,3)的位置向下平移2个单位后的位置是(6,1),列3-2=1。
    第三单元公倍数和公因数
    1、一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的。
    一个数最小的倍数是它本身,没有最大的倍数。一个数倍数的个数是无限的。
    一个数最大的因数等于这个数最小的倍数。
    2、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,用符号[,]表示。几个数的公倍数也是无限的。
    3、两个数公有的因数,叫做这两个数的公因数,其中最大的一个,叫做这两个数的最大公因数,用符号(,)。两个数的公因数也是有限的。
    4、两个素数的积一定是合数。举例:3×5=15,15是合数。
    5、两个数的最小公倍数一定是它们的最大公因数的倍数。举例:[6,8]=24,(6,8)=2,24是2的倍数。
    6、求最大公因数和最小公倍数的方法:
    倍数关系的两个数,最大公因数是较小的数,最小公倍数是较大的数。举例:15和5,[15,5]=15,(15,5)=5
    素数关系的两个数,最大公因数是1,最小公倍数是它们的乘积。举例:[3,7]=21,(3,7)=1
    一个素数和一个合数,最大公因数是1,最小公倍数是它们的乘积。[5,8]=40,(5,8)=1
    相邻关系的两个数,最大公因数是1,最小公倍数是它们的乘积。[9,8]=72,(9,8)=1
    特殊关系的数(两个都是合数,一个是奇数,一个是偶数,但他们之间只有一个公因数1),比如4和9、4和15、10和21,最大公因数是1,最小公倍数是它们的乘积。
    一般关系的两个数,求最大公因数用列举法或短除法,求最小公倍数用大数翻倍法或短除法。(详见课本31页内容)
    学习方法
    1.注重预习培养自学能力
    在预习的时候,应当把定理、定律、公式、常数、特定符号这些内容单独汇集在一起,每抄录一遍,则加深一次印象。上课的时候,老师讲到这些地方时,应把自己预习时的理解和老师讲的相对照,看自己有没有理解错的地方。预习可以用“一划、二批、三试、四分”的预习方法。
    一划:就是圈划知识要点,基本概念。
    二批:就是把预习时的体会、见解以及自己暂时不能理解的内容,批注在书的空白地方。
    三试:就是尝试性地做一些简单的练习,检验自己预习的效果。
    四分:就是把自己预习的这节知识要点列出来,分出哪些是通过预习已掌握了的,哪些知识是自己预习不能理解掌握了的,需要在课堂学习中进一步学习。
    2、把握课堂,提高学习效果
    课堂学习是学习过程中最基本,最重要的环节,要坚持做到“五到”即耳到、眼到、口到、心到、手到。
    手到:就是以简单扼要的方法记下听课的要点,思维方法,以备复习、消化、再思考,但要以听课为主,记录为辅;
    耳到:专心听讲,听老师如何讲课,如何分析、如何归纳总结。另外,还要听同学们的解答,看是否对自己有所启发,特别要注意听自己预习未看懂的问题;
    口到:主动与老师、同学们进行合作、探究,敢于提出问题,并发表自己的看法,不要人云亦云;
    眼到:就是一看老师讲课的表情,手势所表达的意思,看老师的演示实验、板书内容,二看老师要求看的课本内容,把书上知识与老师课堂讲的知识联系起来;
    心到:就是课堂上要认真思考,注意理解课堂的新知识,课堂上的思考要主动积极。关键是理解并能融汇贯通,灵活使用。对于老师讲的新概念,应抓住关键字眼,变换角度去理解。
    3、掌握练习方法,提高解答数学题的能力
    数学的解答能力,主要通过实际的练习来提高。数学练习应注意以下几点:
    (1)、端正态度,充分认识到数学练习的重要性。实际练习不仅可以提高解答速度,掌握解答技能技巧,而且,许多的新问题常在练习中出现。
    (2)、要有自信心与意志力。数学练习常有繁杂的计算,深奥的证明,自己应有充足的信心,顽强的意志,耐心细致的习惯。
    (3)、要养成先思考,后解答,再检查的良好习惯,遇到一个题,不能盲目地进行练习,无效计算,应先深入领会题意,认真思考,抓住关键,再作解答。解答后,还应进行检查。
    4、掌握复习方法,提高数学综合能力.
    复习是记忆之母,对所学的知识要不断地复习,复习巩固应注意掌握以下方法。
    (1).合理安排复习时间,“趁热打铁”,当天学习的功课当天必须复习,无论当天作业有多少,多难,都要巩固复习。
    (2).采用综合复习方法,即通过找出知识的左右关系和纵横之间的内在联系,从整体上提高,综合复习具体可分“三步走”:首先是统观全局,浏览全部内容,通过唤起回忆,初步形成知识体系印象,其次是加深理解,对所学内容进行综合分析,最后是整理巩固,形成完整的知识体系。
    (3).突破薄弱环节的复习方法.要多在薄弱环节上下功夫,加强巩固好课本知识,只有突破薄弱环节,才利于从整体上提高数学综合能力。
    学习技巧
    1.求教与自学相结合
    在学习过程中,即要争取教师的指导和帮助,但是又不能过分依赖教师, 必须自己主动地去学习、去探索、去获取,应该在自己认真学习和研究的基础上去寻求教师和同学的帮助。
    2.学习与思考相结合
    在学习过程中,对课本的内容要认真研究,提出疑问,追本究源。对每一个概念、公式、定理都要弄清其来龙去脉、前因后果、内在联系,以及蕴含于推导过程中的数学思想和方法。在解决问题时,要尽量采用不同的途径和方法,要克服那种死守书本、机械呆板、不知变通的学习方法。
    3.学用结合,勤于实践
    在学习过程中,要准确地掌握抽象概念的本质含义,了解从实际模型中抽象为理论的演变过程。对所学理论知识,要在更大范围内寻求它的具体实例,使之具体化,尽量将所学的理论知识和思维方法应用于实践。
    4.博观约取,由博返约
    课本是获得知识的主要来源,但不是唯一的来源。在学习过程中,除了认真研究课本以外,还要阅读有关的课外资料,来扩大知识领域。同时在广泛阅读的基础上,进行认真研究,掌握其知识结构。
    5.既有模仿,又有创新
    模仿是数学学习中不可缺少的学习方法,但是决不能机械地模仿,应该在消化理解的基础上,开动脑筋,提出自己的见解和看法,而不拘泥于已有的框框,不囿于现成的模式。
    6.及时复习增强记忆
    课堂上学习的内容,必须当天消化,要先复习,后做练习,复习工作必须经常进行,每一单元结束后,应将所学知识进行概括整理,使之系统化、深刻化。
    7.总结学习经验,评价学习效果
    学习中的总结和评价有利于知识体系的建立、解题规律的掌握、学习方法与态度的调整和评判能力的提高。在学习过程中,应注意总结听课、阅读和解题中的收获和体会。