高三数学总单元知识点概括


    数学一般方法主要是数学解题的具体方法及相关技能、技巧,比如高中数学里的配方法、换元法、待定系数法和判别式法等。以下是小编给大家整理的高三数学总单元知识点概括,希望能助你一臂之力!
    高三数学总单元知识点概括1
    一、排列
    1定义
    (1)从n个不同元素中取出m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一排列。
    (2)从n个不同元素中取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为Amn.
    2排列数的公式与性质
    (1)排列数的公式:Amn=n(n-1)(n-2)…(n-m+1)
    特例:当m=n时,Amn=n!=n(n-1)(n-2)…×3×2×1
    规定:0!=1
    二、组合
    1定义
    (1)从n个不同元素中取出m个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合
    (2)从n个不同元素中取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号Cmn表示。
    2比较与鉴别
    由排列与组合的定义知,获得一个排列需要“取出元素”和“对取出元素按一定顺序排成一列”两个过程,而获得一个组合只需要“取出元素”,不管怎样的顺序并成一组这一个步骤。
    排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关。因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据。
    三、排列组合与二项式定理知识点
    1.计数原理知识点
    ①乘法原理:N=n1·n2·n3·…nM(分步)②加法原理:N=n1+n2+n3+…+nM(分类)
    2.排列(有序)与组合(无序)
    Anm=n(n-1)(n-2)(n-3)-…(n-m+1)=n!/(n-m)!Ann=n!
    Cnm=n!/(n-m)!m!
    Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?k!=(k+1)!-k!
    3.排列组合混合题的解题原则:先选后排,先分再排
    排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素.以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.
    捆绑法(集团元素法,把某些必须在一起的元素视为一个整体考虑)
    插空法(解决相间问题)间接法和去杂法等等
    在求解排列与组合应用问题时,应注意:
    (1)把具体问题转化或归结为排列或组合问题;
    (2)通过分析确定运用分类计数原理还是分步计数原理;
    (3)分析题目条件,避免“选取”时重复和遗漏;
    (4)列出式子计算和作答.
    经常运用的数学思想是:
    ①分类讨论思想;②转化思想;③对称思想.
    4.二项式定理知识点:
    ①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn
    特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn
    ②主要性质和主要结论:对称性Cnm=Cnn-m
    二项式系数在中间。(要注意n为奇数还是偶数,答案是中间一项还是中间两项)
    所有二项式系数的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n
    奇数项二项式系数的和=偶数项而是系数的和
    Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1
    ③通项为第r+1项:Tr+1=Cnran-rbr作用:处理与指定项、特定项、常数项、有理项等有关问题。
    5.二项式定理的应用:解决有关近似计算、整除问题,运用二项展开式定理并且结合放缩法证明与指数有关的不等式。
    6.注意二项式系数与项的系数(字母项的系数,指定项的系数等,指运算结果的系数)的区别,在求某几项的系数的和时注意赋值法的应用。
    高三数学总单元知识点概括2
    (1)不等关系
    感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景。
    (2)一元二次不等式
    ①经历从实际情境中抽象出一元二次不等式模型的过程。
    ②通过函数图象了解一元二次不等式与相应函数、方程的联系。
    ③会解一元二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图。
    (3)二元一次不等式组与简单线性规划问题
    ①从实际情境中抽象出二元一次不等式组。
    ②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组(参见例2)。
    ③从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决(参见例3)。
    (4)基本不等式:
    ①探索并了解基本不等式的证明过程。
    ②会用基本不等式解决简单的(小)值问题。
    高三数学总单元知识点概括3
    1、圆柱体:
    表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)
    2、圆锥体:
    表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h为其高,
    3、正方体
    a-边长,S=6a2,V=a3
    4、长方体
    a-长,b-宽,c-高S=2(ab+ac+bc)V=abc
    5、棱柱
    S-底面积h-高V=Sh
    6、棱锥
    S-底面积h-高V=Sh/3
    7、棱台
    S1和S2-上、下底面积h-高V=h[S1+S2+(S1S2)^1/2]/3
    8、拟柱体
    S1-上底面积,S2-下底面积,S0-中截面积
    h-高,V=h(S1+S2+4S0)/6
    9、圆柱
    r-底半径,h-高,C—底面周长
    S底—底面积,S侧—侧面积,S表—表面积C=2πr
    S底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h
    10、空心圆柱
    R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)
    11、直圆锥
    r-底半径h-高V=πr^2h/3
    12、圆台
    r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/3
    13、球
    r-半径d-直径V=4/3πr^3=πd^3/6
    14、球缺
    h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3
    15、球台
    r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6
    16、圆环体
    R-环体半径D-环体直径r-环体截面半径d-环体截面直径
    V=2π2Rr2=π2Dd2/4
    17、桶状体
    D-桶腹直径d-桶底直径h-桶高
    V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)
    V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)