高一数学必修三知识点梳理


    进入高中后,很多新生有这样的心理落差,比自己成绩优秀的大有人在,很少有人注意到自己的存在,心理因此失衡,这是正常心理,但是应尽快进入学习状态。小编高一频道为正在努力学习的你整理了《高一数学必修三知识点总结》,希望对你有帮助!
    
    高一数学必修三知识点梳理
    1.一些基本概念:
    (1)向量:既有大小,又有方向的量.
    (2)数量:只有大小,没有方向的量.
    (3)有向线段的三要素:起点、方向、长度.
    (4)零向量:长度为0的向量.
    (5)单位向量:长度等于1个单位的向量.
    (6)平行向量(共线向量):方向相同或相反的非零向量.
    ※零向量与任一向量平行.
    (7)相等向量:长度相等且方向相同的向量.
    2.向量加法运算:
    ⑴三角形法则的特点:首尾相连.
    ⑵平行四边形法则的特点:共起点
    高一数学必修三知识点梳理
    一、集合有关概念
    1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
    2、集合的中元素的三个特性:
    1.元素的确定性;
    2.元素的互异性;
    3.元素的无序性
    说明:
    (1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
    (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
    (3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
    (4)集合元素的三个特性使集合本身具有了确定性和整体性。
    3、集合的表示:{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
    1.用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
    2.集合的表示方法:列举法与描述法。
    注意啊:常用数集及其记法:
    非负整数集(即自然数集)记作:N
    正整数集N或N+整数集Z有理数集Q实数集R
    关于“属于”的概念
    集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a?A
    列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
    描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。
    ①语言描述法:例:{不是直角三角形的三角形}
    ②数学式子描述法:例:不等式x-3>2的'解集是{x?Rx-3>2}或{-3>2}
    4、集合的分类:
    1.有限集含有有限个元素的集合
    2.无限集含有无限个元素的集合
    3.空集不含任何元素的集合例:{2=-5}
    二、集合间的基本关系
    1.“包含”关系—子集
    注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
    反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA
    2.“相等”关系(5≥5,且5≤5,则5=5)
    实例:设A={2-1=0}B={-1,1}“元素相同”
    结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B
    ①任何一个集合是它本身的子集。AíA
    ②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)
    ③如果AíB,BíC,那么AíC
    ④如果AíB同时BíA那么A=B
    3.不含任何元素的集合叫做空集,记为Φ
    规定:空集是任何集合的子集,空集是任何非空集合的真子集
    高一数学必修三知识点梳理
    一、高中数学函数的有关概念
    1.高中数学函数函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于函数A中的任意一个数x,在函数B中都有确定的数f(x)和它对应,那么就称f:A→B为从函数A到函数B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的函数{f(x)|x∈A}叫做函数的值域.
    注意:
    函数定义域:能使函数式有意义的实数x的函数称为函数的定义域。
    求函数的定义域时列不等式组的主要依据是:
    (1)分式的分母不等于零;
    (2)偶次方根的被开方数不小于零;
    (3)对数式的真数必须大于零;
    (4)指数、对数式的底必须大于零且不等于1.
    (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的函数.
    (6)指数为零底不可以等于零,
    (7)实际问题中的函数的定义域还要保证实际问题有意义.
    ?相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致(两点必须同时具备)
    2.高中数学函数值域:先考虑其定义域
    (1)观察法
    (2)配方法
    (3)代换法
    3.函数图象知识归纳
    (1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的函数C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.
    (2)画法
    A、描点法:
    B、图象变换法
    常用变换方法有三种
    1)平移变换
    2)伸缩变换
    3)对称变换
    4.高中数学函数区间的概念
    (1)函数区间的分类:开区间、闭区间、半开半闭区间
    (2)无穷区间
    5.映射
    一般地,设A、B是两个非空的函数,如果按某一个确定的对应法则f,使对于函数A中的任意一个元素x,在函数B中都有确定的元素y与之对应,那么就称对应f:AB为从函数A到函数B的一个映射。记作“f(对应关系):A(原象)B(象)”
    对于映射f:A→B来说,则应满足:
    (1)函数A中的每一个元素,在函数B中都有象,并且象是的;
    (2)函数A中不同的元素,在函数B中对应的象可以是同一个;
    (3)不要求函数B中的每一个元素在函数A中都有原象。
    6.高中数学函数之分段函数
    (1)在定义域的不同部分上有不同的解析表达式的函数。
    (2)各部分的自变量的取值情况.
    (3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.
    补充:复合函数
    如果y=f(u)(u∈M),u=g(x)(x∈A),则y=f[g(x)]=F(x)(x∈A)称为f、g的复合函数。