八年级人教版数学知识点


    每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要讲练的。下面是小编给大家整理的一些八年级数学的知识点,希望对大家有所帮助。
    初二数学知识点
    【相似、全等三角形】
    1、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
    2、相似三角形判定定理1两角对应相等,两三角形相似(ASA)
    3、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
    4、判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)
    5、判定定理3三边对应成比例,两三角形相似(SSS)
    6、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
    7、性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
    8、性质定理2相似三角形周长的比等于相似比
    9、性质定理3相似三角形面积的比等于相似比的平方
    10、边角边公理有两边和它们的夹角对应相等的两个三角形全等
    11、角边角公理有两角和它们的夹边对应相等的两个三角形全等
    12、推论有两角和其中一角的对边对应相等的两个三角形全等
    13、边边边公理有三边对应相等的两个三角形全等
    14、斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等
    15、全等三角形的对应边、对应角相等
    【等腰、直角三角形】
    1、等腰三角形的性质定理等腰三角形的两个底角相等
    2、推论1等腰三角形顶角的平分线平分底边并且垂直于底边
    3、等腰三角形的顶角平分线、底边上的中线和高互相重合
    4、推论3等边三角形的各角都相等,并且每一个角都等于60°
    5、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
    6、推论1三个角都相等的三角形是等边三角形
    7、推论2有一个角等于60°的等腰三角形是等边三角形
    8、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
    9、直角三角形斜边上的中线等于斜边上的一半
    初二数学知识点归纳
    定义:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线之间的距离。
    平行四边形:两组对边分别平行的四边形.。对边相等,对角相等,对角线互相平分。两组对边分别平行的四边形是平行四边形,两组对边分别相等的四边形是平行四边形,两条对角线互相平分的四边形是平行四边形,一组对边平行且相等的四边形是平行四边形
    菱形:一组邻边相等的平行四边形??(平行四边形的性质)。四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。一组邻边相等的平行四边形是菱形,对角线互相垂直的平行四边形是菱形,四条边都相等的四边形是菱形。
    矩形:有一个内角是直角的平行四边形??(平行四边形的性质)。对角线相等,四个角都是直角。有一个内角是直角的平行四边形是矩形,对角线相等的平行四边形是矩形。
    正方形:一组邻边相等的矩形。正方形具有平行四边形、菱形、矩形的一切性质。一组邻边相等的矩形是正方形,一个内角是直角的菱形是正方形。
    梯形:一组对边平行而另一组对边不平行的四边形。一组对边平行而另一组对边不平行的四边形是梯形。等腰梯形:两条腰相等的梯形。同一底上的两个内角相等,对角线相等。两腰相等的梯形是等腰梯形,同一底上两个内角相等的梯形是等腰梯形。
    直角梯形:一条腰和底垂直的梯形。一条腰和底垂直的梯形是直角梯形。
    多边形:在平面内,由若干条不在同一条直线上的线段首尾顺次相连组成的封闭图形叫做多边形。n边形的内角和等于(n-2)×180
    多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角。多边形的外角和都等于360°。三角形、四边形和六边形都可以密铺。
    定义:在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。
    中心对称图形上的每一对对应点所连成的线段都被对称中心平分。
    八年级数学学习方法技巧
    “对应”的思想
    “对应”的思想由来已久,比如我们将一支铅笔、一本书、一栋房子对应一个抽象的数“1”,将两只眼睛、一对耳环、双胞胎对应一个抽象的数“2”;随着学习的深入,我们还将“对应”扩展到对应一种形式,对应一种关系,等等。比如我们在计算或化简中,将对应公式的左边,对应a,y对应b,再利用公式的右边直接得出原式的结果即。
    自学能力的培养是深化学习的必由之路
    在学习新概念、新运算时,老师们总是通过已有知识自然而然过渡到新知识,水到渠成,亦即所谓“温故而知新”。因此说,数学是一门能自学的学科,自学成才最典型的例子就是数学家华罗庚。
    我们在课堂上听老师讲解,不光是学习新知识,更重要的是潜移默化老师的那种数学思维习惯,逐渐地培养起自己对数学的一种悟性。
    自学能力越强,悟性就越高。随着年龄的增长,同学们的依赖性应不断减弱,而自学能力则应不断增强。因此,要养成预习的习惯。
    因此,以前的数学学得扎实,就为以后的进取奠定了基础,就不难自学新课。同时,在预习新课时,碰到什么自己解决不了的问题,带着问题去听老师讲解新课,收获之大是不言而喻的。
    学来学去,知识还是别人的。检验数学学得好不好的标准就是会不会解题。听懂并记忆有关的定义、法则、公式、定理,只是学好数学的必要条件,能独立解题、解对题才是学好数学的标志。
    自信才能自强
    在考试中,总是看见有些同学的试卷出现许多空白,即有好几题根本没有动手去做。当然,俗话说,艺高胆大,艺不高就胆不大。但是,做不出是一回事,没有去做则是另一回事。稍为难一点的数学题都不是一眼就能看出它的解法和结果的。要去分析、探索、比比画画、写写算算,经过迂回曲折的推理或演算,才显露出条件和结论之间的某种联系,整个思路才会明朗清晰起来。
    具体解题时,一定要认真审题,紧紧抓住题目的所有条件不放,不要忽略了任何一个条件。一道题和一类题之间有一定的共性,可以想想这一类题的一般思路和一般解法,但更重要的是抓住这一道题的特殊性,抓住这一道题与这一类题不同的地方。数学的题目几乎没有相同的,总有一个或几个条件不尽相同,因此思路和解题过程也不尽相同。有些同学老师讲过的题会做,其它的题就不会做,只会依样画瓢,题目有些小的变化就干瞪眼,无从下手。
    数学题目是无限的,但数学的思想和方法却是有限的。我们只要学好了有关的基础知识,掌握了必要的数学思想和方法,就能顺利地对付那无限的题目。题目并不是做得越多越好,题海无边,总也做不完。关键是你有没有培养起良好的数学思维习惯,有没有掌握正确的数学解题方法。
    解题需要丰富的知识,更需要自信心。没有自信就会畏难,就会放弃;只有自信,才能勇往直前,才不会轻言放弃,才会加倍努力地学习,才有希望攻克难关,迎来属于自己的春天。