七年级数学课文知识点归纳


    对世界上的一切学问与知识的掌握也并非难事,只要持之以恒地学习,努力掌握规律,达到熟悉的境地,就能融会贯通,运用自如。学习需要持之以恒。下面是小编给大家整理的一些七年级数学的知识点,希望对大家有所帮助。
    
    初一下册数学知识点总结北师大版
    1.1正数与负数
    在以前学过的0以外的数前面加上负号“-”的数叫负数(negativenumber)。
    与负数具有相反意义,即以前学过的0以外的数叫做正数(positivenumber)(根据需要,有时在正数前面也加上“+”)。
    1.2有理数
    正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。
    整数和分数统称有理数(rationalnumber)。
    通常用一条直线上的点表示数,这条直线叫数轴(numberaxis)。
    数轴三要素:原点、正方向、单位长度。
    在直线上任取一个点表示数0,这个点叫做原点(origin)。
    只有符号不同的两个数叫做互为相反数(oppositenumber)。(例:2的相反数是-2;0的相反数是0)
    数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue),记作|a|。
    一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。
    1.3有理数的加减法
    有理数加法法则:
    1.同号两数相加,取相同的符号,并把绝对值相加。
    2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
    3.一个数同0相加,仍得这个数。
    有理数减法法则:减去一个数,等于加这个数的相反数。
    1.4有理数的乘除法
    有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
    乘积是1的两个数互为倒数。
    有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
    两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。mì
    求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(basenumber),n叫做指数(exponent)。
    负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。
    把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法。
    从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significantdigit)。
    七年级下册数学知识点
    概率
    一、事件:
    1、事件分为必然事件、不可能事件、不确定事件。
    2、必然事件:事先就能肯定一定会发生的事件。也就是指该事件每次一定发生,不可能不发生,即发生的可能是100%(或1)。
    3、不可能事件:事先就能肯定一定不会发生的事件。也就是指该事件每次都完全没有机会发生,即发生的可能性为零。
    4、不确定事件:事先无法肯定会不会发生的事件,也就是说该事件可能发生,也可能不发生,即发生的可能性在0和1之间。
    二、等可能性:是指几种事件发生的可能性相等。
    1、概率:是反映事件发生的可能性的大小的量,它是一个比例数,一般用P来表示,P(A)=事件A可能出现的结果数/所有可能出现的结果数。
    2、必然事件发生的概率为1,记作P(必然事件)=1;
    3、不可能事件发生的概率为0,记作P(不可能事件)=0;
    4、不确定事件发生的概率在0—1之间,记作0
    三、几何概率
    1、事件A发生的概率等于此事件A发生的可能结果所组成的面积(用SA表示)除以所有可能结果组成图形的面积(用S全表示),所以几何概率公式可表示为P(A)=SA/S全,这是因为事件发生在每个单位面积上的概率是相同的。
    2、求几何概率:
    (1)首先分析事件所占的面积与总面积的关系;
    (2)然后计算出各部分的面积;
    (3)最后代入公式求出几何概率。
    初一下册数学《三角形》知识点
    一、目标与要求
    1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形。
    2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系。
    3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题。
    4.三角形的内角和定理,能用平行线的性质推出这一定理。
    5.能应用三角形内角和定理解决一些简单的实际问题。
    二、重点
    三角形内角和定理;
    对三角形有关概念的了解,能用符号语言表示三条形。
    三、难点
    三角形内角和定理的推理的过程;
    在具体的图形中不重复,且不遗漏地识别所有三角形;
    用三角形三边不等关系判定三条线段可否组成三角形。
    四、知识框架
    五、知识点、概念总结
    1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
    2.三角形的分类
    3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
    4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
    5.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
    6.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
    7.高线、中线、角平分线的意义和做法
    8.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
    9.三角形内角和定理:三角形三个内角的和等于180°
    推论1直角三角形的两个锐角互余;
    推论2三角形的一个外角等于和它不相邻的两个内角和;
    推论3三角形的一个外角大于任何一个和它不相邻的内角;
    三角形的内角和是外角和的一半。
    10.三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。
    11.三角形外角的性质
    (1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;
    (2)三角形的一个外角等于与它不相邻的两个内角和;
    (3)三角形的一个外角大于与它不相邻的任一内角;
    (4)三角形的外角和是360°。
    12.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
    13.多边形的内角:多边形相邻两边组成的角叫做它的内角。
    14.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
    15.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
    16.多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。
    17.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。
    18.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。