高三数学重要温习的知识点分析


    数学能力包括:逻辑推理能力、抽象思维能力、计算能力、空间想象能力和分析解决问题能力共五大能力。这些能力是在不同的数学学习环境中得到培养的。以下是小编给大家整理的高三数学重要温习的知识点分析,希望大家能够喜欢!
    高三数学重要温习的知识点分析1
    1.数列的定义、分类与通项公式
    (1)数列的定义:
    ①数列:按照一定顺序排列的一列数.
    ②数列的项:数列中的每一个数.
    (2)数列的分类:
    分类标准类型满足条件
    项数有穷数列项数有限
    无穷数列项数无限
    项与项间的大小关系递增数列an+1>an其中n∈N_
    递减数列an+1<an< p="">
    常数列an+1=an
    (3)数列的通项公式:
    如果数列{an}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.
    2.数列的递推公式
    如果已知数列{an}的首项(或前几项),且任一项an与它的前一项an-1(n≥2)(或前几项)间的关系可用一个公式来表示,那么这个公式叫数列的递推公式.
    3.对数列概念的理解
    (1)数列是按一定“顺序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关,这有别于集合中元素的无序性.因此,若组成两个数列的数相同而排列次序不同,那么它们就是不同的两个数列.
    (2)数列中的数可以重复出现,而集合中的元素不能重复出现,这也是数列与数集的区别.
    4.数列的函数特征
    数列是一个定义域为正整数集N_(或它的有限子集{1,2,3,…,n})的特殊函数,数列的通项公式也就是相应的函数解析式,即f(n)=an(n∈N_).
    高三数学重要温习的知识点分析2
    1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解.
    2.在应用条件时,易A忽略是空集的情况
    3.你会用补集的思想解决有关问题吗?
    4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?
    5.你知道“否命题”与“命题的否定形式”的区别.
    6.求解与函数有关的问题易忽略定义域优先的原则.
    7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称.
    8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域.
    9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调
    10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法
    11.求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示.
    12.求函数的值域必须先求函数的定义域。
    13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?
    14.解对数函数问题时,你注意到真数与底数的限制条件了吗?
    (真数大于零,底数大于零且不等于1)字母底数还需讨论
    15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?
    16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。
    17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?
    18.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”.
    19.绝对值不等式的解法及其几何意义是什么?
    20.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?
    21.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.
    22.在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示.
    23.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a<0.
    24.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?
    25.在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。
    26.你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在?
    27.数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其定义域中的值不是连续的。)
    28.应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。
    29.正角、负角、零角、象限角的概念你清楚吗?,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边相同的角和相等的角的区别吗?
    30.三角函数的定义及单位圆内的三角函数线(正弦线、余弦线、正切线)的定义你知道吗?
    31.在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?
    32.你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角.异角化同角,异名化同名,高次化低次)
    33.反正弦、反余弦、反正切函数的取值范围分别是
    34.你还记得某些特殊角的三角函数值吗?
    35.掌握正弦函数、余弦函数及正切函数的图象和性质.你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗?(要注意数形结合与书写规范,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗?
    36.函数的图象的平移,方程的平移以及点的平移公式易混:
    (1)函数的图象的平移为“左+右-,上+下-”;如函数的图象左移2个单位且下移3个单位得到的图象的解析式为y=2(x+2)+4-3,即y=2x+5.
    (2)方程表示的图形的平移为“左+右-,上-下+”;如直线左移2个个单位且下移3个单位得到的图象的解析式为2(x+2)-(y+3)+4=0,即y=2x+5.
    (3)点的平移公式:点P(x,y)按向量平移到点P(x,y),则x=x+hy=y+k.
    37.在三角函数中求一个角时,注意考虑两方面了吗?(先求出某一个三角函数值,再判定角的范围)
    38.形如的周期都是,但的周期为。
    39.正弦定理时易忘比值还等于2R。
    高三数学重要温习的知识点分析3
    a(1)=a,a(n)为公差为r的等差数列
    通项公式:
    a(n)=a(n-1)+r=a(n-2)+2r=...=a[n-(n-1)]+(n-1)r=a(1)+(n-1)r=a+(n-1)r.
    可用归纳法证明。
    n=1时,a(1)=a+(1-1)r=a。成立。
    假设n=k时,等差数列的通项公式成立。a(k)=a+(k-1)r
    则,n=k+1时,a(k+1)=a(k)+r=a+(k-1)r+r=a+[(k+1)-1]r.
    通项公式也成立。
    因此,由归纳法知,等差数列的通项公式是正确的。
    求和公式:
    S(n)=a(1)+a(2)+...+a(n)
    =a+(a+r)+...+[a+(n-1)r]
    =na+r[1+2+...+(n-1)]
    =na+n(n-1)r/2
    同样,可用归纳法证明求和公式。
    a(1)=a,a(n)为公比为r(r不等于0)的等比数列
    通项公式:
    a(n)=a(n-1)r=a(n-2)r^2=...=a[n-(n-1)]r^(n-1)=a(1)r^(n-1)=ar^(n-1).
    可用归纳法证明等比数列的通项公式。
    求和公式:
    S(n)=a(1)+a(2)+...+a(n)
    =a+ar+...+ar^(n-1)
    =a[1+r+...+r^(n-1)]
    r不等于1时,
    S(n)=a[1-r^n]/[1-r]
    r=1时,
    S(n)=na.
    同样,可用归纳法证明求和公式。