高二数学关键知识点


    学习并领悟坚强,做一个对生活充满自信的人,忘记过去把握此刻,人生依旧要坚强地走下去。卑微的小草,正正因它学习并领悟了坚强,最后成为了原野。所以学习对我们很重要,下面是小编给大家带来的高二数学关键知识点,希望能帮助到你!
    高二数学关键知识点1
    1、圆的定义
    平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
    2、圆的方程
    (1)标准方程,圆心,半径为r;
    (2)一般方程
    当时,方程表示圆,此时圆心为,半径为
    当时,表示一个点;当时,方程不表示任何图形。
    (3)求圆方程的方法:
    一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,
    需求出a,b,r;若利用一般方程,需要求出D,E,F;
    另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。
    3、直线与圆的位置关系
    直线与圆的位置关系有相离,相切,相交三种情况:
    (1)设直线,圆,圆心到l的距离为,则有
    (2)过圆外一点的切线:
    ①k不存在,验证是否成立
    ②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】
    (3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2
    4、圆与圆的位置关系
    通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。
    设圆
    两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。
    当时两圆外离,此时有公切线四条;
    当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;
    当时两圆相交,连心线垂直平分公共弦,有两条外公切线;
    当时,两圆内切,连心线经过切点,只有一条公切线;
    当时,两圆内含;当时,为同心圆。
    注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线
    圆的辅助线一般为连圆心与切线或者连圆心与弦中点
    高二数学关键知识点2
    1、向量的加法
    向量的加法满足平行四边形法则和三角形法则。
    AB+BC=AC。
    a+b=(x+x',y+y')。
    a+0=0+a=a。
    向量加法的运算律:
    交换律:a+b=b+a;
    结合律:(a+b)+c=a+(b+c)。
    2、向量的减法
    如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0
    AB-AC=CB.即“共同起点,指向被减”
    a=(x,y)b=(x',y')则a-b=(x-x',y-y').
    4、数乘向量
    实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。
    当λ>0时,λa与a同方向;
    当λ<0时,λa与a反方向;
    当λ=0时,λa=0,方向任意。
    当a=0时,对于任意实数λ,都有λa=0。
    注:按定义知,如果λa=0,那么λ=0或a=0。
    实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
    当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;
    当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。
    数与向量的乘法满足下面的运算律
    结合律:(λa)·b=λ(a·b)=(a·λb)。
    向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.
    数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.
    数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。②如果a≠0且λa=μa,那么λ=μ。
    3、向量的的数量积
    定义:两个非零向量的夹角记为〈a,b〉,且〈a,b〉∈[0,π]。
    定义:两个向量的数量积(内积、点积)是一个数量,记作a·b。若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣。
    向量的数量积的坐标表示:a·b=x·x'+y·y'。
    向量的数量积的运算率
    a·b=b·a(交换率);
    (a+b)·c=a·c+b·c(分配率);
    向量的数量积的性质
    a·a=|a|的平方。
    a⊥b〈=〉a·b=0。
    |a·b|≤|a|·|b|。
    高二数学关键知识点3
    异面直线定义:不同在任何一个平面内的两条直线
    异面直线性质:既不平行,又不相交.
    异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线
    异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角.两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直.
    求异面直线所成角步骤:
    A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.B、证明作出的角即为所求角C、利用三角形来求角
    (7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补.
    (8)空间直线与平面之间的位置关系
    直线在平面内——有无数个公共点.
    三种位置关系的符号表示:aαa∩α=Aaα
    (9)平面与平面之间的位置关系:平行——没有公共点;αβ
    相交——有一条公共直线.α∩β=b
    2、空间中的平行问题
    (1)直线与平面平行的判定及其性质
    线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行.
    线线平行线面平行
    线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,
    那么这条直线和交线平行.线面平行线线平行
    (2)平面与平面平行的判定及其性质
    两个平面平行的判定定理
    (1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行
    (线面平行→面面平行),
    (2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行.
    (线线平行→面面平行),
    (3)垂直于同一条直线的两个平面平行,
    两个平面平行的性质定理
    (1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行.(面面平行→线面平行)
    (2)如果两个平行平面都和第三个平面相交,那么它们的交线平行.(面面平行→线线平行)
    3、空间中的垂直问题
    (1)线线、面面、线面垂直的定义
    两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直.
    线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直.
    平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直.
    (2)垂直关系的判定和性质定理
    线面垂直判定定理和性质定理
    判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面.
    性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.
    面面垂直的判定定理和性质定理
    判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.
    性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面.
    4、空间角问题
    (1)直线与直线所成的角
    两平行直线所成的角:规定为.
    两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角.
    两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角.
    (2)直线和平面所成的角
    平面的平行线与平面所成的角:规定为.平面的垂线与平面所成的角:规定为.
    平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角.
    求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”.
    在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,
    在解题时,注意挖掘题设中主要信息:
    (1)斜线上一点到面的垂线;
    (2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线.
    (3)二面角和二面角的平面角
    二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面.
    二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角.
    直二面角:平面角是直角的二面角叫直二面角.
    两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角
    求二面角的方法
    定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角
    垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角