冀教版七年级数学知识点


    学习这件事不在乎有没有人教你,最重要的是在于你自己有没有觉悟和恒心。任何科目学习方法其实都是一样的,不断的记忆与练习,使知识刻在脑海里。下面是小编给大家整理的一些七年级数学的知识点,希望对大家有所帮助。
    初一下册数学《三角形》知识点
    一、目标与要求
    1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形。
    2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系。
    3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题。
    4.三角形的内角和定理,能用平行线的性质推出这一定理。
    5.能应用三角形内角和定理解决一些简单的实际问题。
    二、重点
    三角形内角和定理;
    对三角形有关概念的了解,能用符号语言表示三条形。
    三、难点
    三角形内角和定理的推理的过程;
    在具体的图形中不重复,且不遗漏地识别所有三角形;
    用三角形三边不等关系判定三条线段可否组成三角形。
    四、知识框架
    五、知识点、概念总结
    1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
    2.三角形的分类
    3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
    4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
    5.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
    6.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
    7.高线、中线、角平分线的意义和做法
    8.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
    9.三角形内角和定理:三角形三个内角的和等于180°
    推论1直角三角形的两个锐角互余;
    推论2三角形的一个外角等于和它不相邻的两个内角和;
    推论3三角形的一个外角大于任何一个和它不相邻的内角;
    三角形的内角和是外角和的一半。
    10.三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。
    11.三角形外角的性质
    (1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;
    (2)三角形的一个外角等于与它不相邻的两个内角和;
    (3)三角形的一个外角大于与它不相邻的任一内角;
    (4)三角形的外角和是360°。
    初一下学期数学知识点
    相交线与平行线
    1、在同一平面内,两条直线的位置关系有两种:相交和平行,垂直是相交的一种特殊情况。
    2、在同一平面内,不相交的两条直线叫平行线。如果两条直线只有一个公共点,称这两条直线相交;如果两条直线没有公共点,称这两条直线平行。
    3、两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。邻补角的性质:邻补角互补。如图1所示,与互为邻补角,与互为邻补角。+=180°;+=180°;+=180°;+=180°。
    4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的反向延长线,这样的两个角互为对顶角。对顶角的性质:对顶角相等。如图1所示,与互为对顶角。=;=。
    5、两条直线相交所成的角中,如果有一个是直角或90°时,称这两条直线互相垂直,其中一条叫做另一条的垂线。如图2所示,当=90°时,⊥。
    垂线的性质:
    性质1:过一点有且只有一条直线与已知直线垂直。
    性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
    性质3:如图2所示,当a⊥b时,====90°。
    点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。
    6、同位角、内错角、同旁内角基本特征:
    ①在两条直线(被截线)的同一方,都在第三条直线(截线)的同一侧,这样的两个角叫同位角。图3中,共有对同位角:与是同位角;与是同位角;与是同位角;与是同位角。
    ②在两条直线(被截线)之间,并且在第三条直线(截线)的两侧,这样的两个角叫内错角。图3中,共有对内错角:与是内错角;与是内错角。
    ③在两条直线(被截线)的之间,都在第三条直线(截线)的同一旁,这样的两个角叫同旁内角。图3中,共有对同旁内角:与是同旁内角;与是同旁内角。
    7、平行公理:经过直线外一点有且只有一条直线与已知直线平行。
    平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
    平行线的性质:
    性质1:两直线平行,同位角相等。如图4所示,如果a∥b,则=;=;=;=。
    性质2:两直线平行,内错角相等。如图4所示,如果a∥b,则=;=。
    性质3:两直线平行,同旁内角互补。如图4所示,如果a∥b,则+=180°;+=180°。
    性质4:平行于同一条直线的两条直线互相平行。如果a∥b,a∥c,则∥。
    8、平行线的判定:
    判定1:同位角相等,两直线平行。如图5所示,如果=或=或=或=,则a∥b。
    判定2:内错角相等,两直线平行。如图5所示,如果=或=,则a∥b。
    判定3:同旁内角互补,两直线平行。如图5所示,如果+=180°;+=180°,则a∥b。
    判定4:平行于同一条直线的两条直线互相平行。如果a∥b,a∥c,则∥。
    七年级数学复习知识点
    【知识点一】实数的分类
    1、按定义分类:2.按性质符号分类:
    注:0既不是正数也不是负数.
    【知识点二】实数的相关概念
    1.相反数
    (1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.
    (2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.
    (3)互为相反数的两个数之和等于0.a、b互为相反数a+b=0.
    2.绝对值|a|≥0.
    3.倒数(1)0没有倒数(2)乘积是1的两个数互为倒数.a、b互为倒数.
    4.平方根
    (1)如果一个数的平方等于a,这个数就叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作.
    (2)一个正数a的正的平方根,叫做a的算术平方根.a(a≥0)的算术平方根记作.
    5.立方根
    如果x3=a,那么x叫做a的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.
    【知识点三】实数与数轴
    数轴定义:规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.
    【知识点四】实数大小的比较
    1.对于数轴上的任意两个点,靠右边的点所表示的数较大.
    2.正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.