高二数学下册知识点总结


    我们对于数学的学习,最容易记住的就是做题,背公式,通过做一题多解、多题一解、一题多变对知识点深入和透彻的理解,达到一个能灵活和综合应用的高度。这样才能提高你的数学知识,帮助你在考试中更容易拿到名次。下面是小编给大家带来的高二数学下册知识点总结,希望能帮助到你!
    高二数学下册知识点总结1
    1.抛物线是轴对称图形。对称轴为直线
    x=-b/2a。
    对称轴与抛物线的交点为抛物线的顶点P。
    特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
    2.抛物线有一个顶点P,坐标为
    P(-b/2a,(4ac-b^2)/4a)
    当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。
    3.二次项系数a决定抛物线的开口方向和大小。
    当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
    |a|越大,则抛物线的开口越小。
    4.一次项系数b和二次项系数a共同决定对称轴的位置。
    当a与b同号时(即ab>0),对称轴在y轴左;
    当a与b异号时(即ab<0),对称轴在y轴右。
    5.常数项c决定抛物线与y轴交点。
    抛物线与y轴交于(0,c)
    6.抛物线与x轴交点个数
    Δ=b^2-4ac>0时,抛物线与x轴有2个交点。
    Δ=b^2-4ac=0时,抛物线与x轴有1个交点。
    Δ=b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)
    高二数学下册知识点总结2
    一、集合、简易逻辑(14课时,8个)
    1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件。
    二、函数(30课时,12个)
    1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例。
    三、数列(12课时,5个)
    1.数列;2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式。
    四、三角函数(46课时,17个)
    1.角的概念的推广;2.弧度制;3.任意角的三角函数;4.单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式;7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16.余弦定理;17.斜三角形解法举例。
    五、平面向量(12课时,8个)
    1.向量;2.向量的加法与减法;3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移。
    六、不等式(22课时,5个)
    1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含绝对值的不等式。
    七、直线和圆的方程(22课时,12个)
    1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题;9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程。
    八、圆锥曲线(18课时,7个)
    1.椭圆及其标准方程;2.椭圆的简单几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简单几何性质;6.抛物线及其标准方程;7.抛物线的简单几何性质。
    九、直线、平面、简单何体(36课时,28个)
    1.平面及基本性质;2.平面图形直观图的画法;3.平面直线;4.直线和平面平行的判定与性质;5.直线和平面垂直的判定与性质;6.三垂线定理及其逆定理;7.两个平面的位置关系;8.空间向量及其加法、减法与数乘;9.空间向量的坐标表示;10.空间向量的数量积;11.直线的方向向量;12.异面直线所成的角;13.异面直线的公垂线;14.异面直线的距离;15.直线和平面垂直的性质;16.平面的法向量;17.点到平面的距离;18.直线和平面所成的角;19.向量在平面内的射影;20.平面与平面平行的性质;21.平行平面间的距离;22.二面角及其平面角;23.两个平面垂直的判定和性质;24.多面体;25.棱柱;26.棱锥;27.正多面体;28.球。
    十、排列、组合、二项式定理(18课时,8个)
    1.分类计数原理与分步计数原理;2.排列;3.排列数公式;4.组合;5.组合数公式;6.组合数的两个性质;7.二项式定理;8.二项展开式的性质。
    十一、概率(12课时,5个)
    1.随机事件的概率;2.等可能事件的概率;3.互斥事件有一个发生的概率;4.相互独立事件同时发生的概率;5.独立重复试验。
    选修Ⅱ(24个)
    十二、概率与统计(14课时,6个)
    1.离散型随机变量的分布列;2.离散型随机变量的期望值和方差;3.抽样方法;4.总体分布的估计;5.正态分布;6.线性回归。
    十三、极限(12课时,6个)
    1.数学归纳法;2.数学归纳法应用举例;3.数列的极限;4.函数的极限;5.极限的四则运算;6.函数的连续性。
    十四、导数(18课时,8个)
    1.导数的概念;2.导数的几何意义;3.几种常见函数的导数;4.两个函数的和、差、积、商的导数;5.复合函数的导数;6.基本导数公式;7.利用导数研究函数的单调性和极值;8.函数的值和最小值。
    十五、复数(4课时,4个)
    1.复数的概念;2.复数的加法和减法;3.复数的乘法和除法;4.复数的一元二次方程和二项方程的解法。
    高二数学下册知识点总结3
    1.万能公式令tan(a/2)=tsina=2t/(1+t^2)cosa=(1-t^2)/(1+t^2)tana=2t/(1-t^2)
    2.辅助角公式asint+bcost=(a^2+b^2)^(1/2)sin(t+r)cosr=a/[(a^2+b^2)^(1/2)]sinr=b/[(a^2+b^2)^(1/2)]tanr=b/a
    3.三倍角公式sin(3a)=3sina-4(sina)^3cos(3a)=4(cosa)^3-3cosatan(3a)=[3tana-(tana)^3]/[1-3(tana^2)]sina_cosb=[sin(a+b)+sin(a-b)]/2cosa_sinb=[sin(a+b)-sin(a-b)]/2cosa_cosb=[cos(a+b)+cos(a-b)]/2sina_sinb=-[cos(a+b)-cos(a-b)]/2sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]
    向量公式:
    1.单位向量:单位向量a0=向量a/|向量a|
    2.P(x,y)那么向量OP=x向量i+y向量j|向量OP|=根号(x平方+y平方)
    3.P1(x1,y1)P2(x2,y2)那么向量P1P2={x2-x1,y2-y1}|向量P1P2|=根号[(x2-x1)平方+(y2-y1)平方]
    4.向量a={x1,x2}向量b={x2,y2}向量a_向量b=|向量a|_|向量b|_Cosα=x1x2+y1y2Cosα=向量a_向量b/|向量a|_|向量b|(x1x2+y1y2)根号(x1平方+y1平方)_根号(x2平方+y2平方)
    5.空间向量:同上推论(提示:向量a={x,y,z})
    6.充要条件:如果向量a向量b那么向量a_向量b=0如果向量a//向量b那么向量a_向量b=|向量a|_|向量b|或者x1/x2=y1/y2
    7.|向量a向量b|平方=|向量a|平方+|向量b|平方2向量a_向量b=(向量a向量b)平方