高二阶段数学知识点


    我们在复习中应该提倡务实精神,也应该重视规范化和格式化,要养成科学,严谨的态度。因为任何一次不规范的答题都有可能造成失分。所以要多做几套题,养成好好审题的毛病,以下是小编给大家整理的高二阶段数学知识点,希望能帮助到你!
    高二阶段数学知识点1
    1、向量的加法
    向量的加法满足平行四边形法则和三角形法则。
    AB+BC=AC。
    a+b=(x+x',y+y')。
    a+0=0+a=a。
    向量加法的运算律:
    交换律:a+b=b+a;
    结合律:(a+b)+c=a+(b+c)。
    2、向量的减法
    如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0
    AB-AC=CB.即“共同起点,指向被减”
    a=(x,y)b=(x',y')则a-b=(x-x',y-y').
    4、数乘向量
    实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。
    当λ>0时,λa与a同方向;
    当λ<0时,λa与a反方向;
    当λ=0时,λa=0,方向任意。
    当a=0时,对于任意实数λ,都有λa=0。
    注:按定义知,如果λa=0,那么λ=0或a=0。
    实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
    当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;
    当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。
    数与向量的乘法满足下面的运算律
    结合律:(λa)·b=λ(a·b)=(a·λb)。
    向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.
    数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.
    数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。②如果a≠0且λa=μa,那么λ=μ。
    3、向量的的数量积
    定义:两个非零向量的夹角记为〈a,b〉,且〈a,b〉∈[0,π]。
    定义:两个向量的数量积(内积、点积)是一个数量,记作a·b。若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣。
    向量的数量积的坐标表示:a·b=x·x'+y·y'。
    向量的数量积的运算率
    a·b=b·a(交换率);
    (a+b)·c=a·c+b·c(分配率);
    向量的数量积的性质
    a·a=|a|的平方。
    a⊥b〈=〉a·b=0。
    |a·b|≤|a|·|b|。
    高二阶段数学知识点2
    1.抛物线是轴对称图形。对称轴为直线
    x=-b/2a。
    对称轴与抛物线的交点为抛物线的顶点P。
    特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
    2.抛物线有一个顶点P,坐标为
    P(-b/2a,(4ac-b^2)/4a)
    当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。
    3.二次项系数a决定抛物线的开口方向和大小。
    当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
    |a|越大,则抛物线的开口越小。
    4.一次项系数b和二次项系数a共同决定对称轴的位置。
    当a与b同号时(即ab>0),对称轴在y轴左;
    当a与b异号时(即ab<0),对称轴在y轴右。
    5.常数项c决定抛物线与y轴交点。
    抛物线与y轴交于(0,c)
    6.抛物线与x轴交点个数
    Δ=b^2-4ac>0时,抛物线与x轴有2个交点。
    Δ=b^2-4ac=0时,抛物线与x轴有1个交点。
    Δ=b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)
    高二阶段数学知识点3
    直线、平面、简单几何体:
    1、学会三视图的分析:
    2、斜二测画法应注意的地方:
    (1)在已知图形中取互相垂直的轴Ox、Oy。画直观图时,把它画成对应轴o'x'、o'y'、使∠x'o'y'=45°(或135°);
    (2)平行于x轴的线段长不变,平行于y轴的线段长减半.
    (3)直观图中的45度原图中就是90度,直观图中的90度原图一定不是90度.
    3、表(侧)面积与体积公式:
    ⑴柱体:①表面积:S=S侧+2S底;②侧面积:S侧=;③体积:V=S底h
    ⑵锥体:①表面积:S=S侧+S底;②侧面积:S侧=;③体积:V=S底h:
    ⑶台体①表面积:S=S侧+S上底S下底②侧面积:S侧=
    ⑷球体:①表面积:S=;②体积:V=
    4、位置关系的证明(主要方法):注意立体几何证明的书写
    (1)直线与平面平行:①线线平行线面平行;②面面平行线面平行。
    (2)平面与平面平行:①线面平行面面平行。
    (3)垂直问题:线线垂直线面垂直面面垂直。核心是线面垂直:垂直平面内的两条相交直线
    5、求角:(步骤-------Ⅰ.找或作角;Ⅱ.求角)
    ⑴异面直线所成角的求法:平移法:平移直线,构造三角形;
    ⑵直线与平面所成的角:直线与射影所成的角