高一数学月考的重要知识点分析


    高中的学习是非常紧张的。每个学生都要投入自己的几乎全部的精力。要想能迅速进步,就要给自己制定一个较长远的切实可行的学习目标和计划,详细的安排好自己的零星时间,并及时作出合理的微量调整。以下是小编给大家整理的高一数学月考的重要知识点分析,希望能帮助到你!
    高一数学月考的重要知识点分析1
    三角函数诱导公式
    【公式一】
    设α为任意角,终边相同的角的同一三角函数的值相等:
    sin(2kπ+α)=sinα(k∈Z)
    cos(2kπ+α)=cosα(k∈Z)
    tan(2kπ+α)=tanα(k∈Z)
    cot(2kπ+α)=cotα(k∈Z)
    【公式二】
    设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
    sin(π+α)=-sinα
    cos(π+α)=-cosα
    tan(π+α)=tanα
    cot(π+α)=cotα
    【公式三】
    任意角α与-α的三角函数值之间的关系:
    sin(-α)=-sinα
    cos(-α)=cosα
    tan(-α)=-tanα
    cot(-α)=-cotα
    【公式四】
    利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
    sin(π-α)=sinα
    cos(π-α)=-cosα
    tan(π-α)=-tanα
    cot(π-α)=-cotα
    【公式五】
    利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
    sin(2π-α)=-sinα
    cos(2π-α)=cosα
    tan(2π-α)=-tanα
    cot(2π-α)=-cotα
    【公式六】
    π/2±α及3π/2±α与α的三角函数值之间的关系:
    sin(π/2+α)=cosα
    cos(π/2+α)=-sinα
    tan(π/2+α)=-cotα
    cot(π/2+α)=-tanα
    sin(π/2-α)=cosα
    cos(π/2-α)=sinα
    tan(π/2-α)=cotα
    cot(π/2-α)=tanα
    sin(3π/2+α)=-cosα
    cos(3π/2+α)=sinα
    tan(3π/2+α)=-cotα
    cot(3π/2+α)=-tanα
    sin(3π/2-α)=-cosα
    cos(3π/2-α)=-sinα
    tan(3π/2-α)=cotα
    cot(3π/2-α)=tanα
    (以上k∈Z)
    高一数学月考的重要知识点分析2
    如果直线a与平面α平行,那么直线a与平面α内的直线有哪些位置关系?
    平行或异面。
    若直线a与平面α平行,那么在平面α内与直线a平行的直线有多少条?这些直线的位置关系如何?
    答:无数条;平行。
    如果直线a与平面α平行,经过直线a的平面β与平面α相交于直线b,那么直线a、b的位置关系如何?为什么?
    平行;因为a∥α,所以a与α没有公共点,则a与b没有公共点,又a与b在同一平面β内,所以a与b平行。
    综上分析,在直线a与平面α平行的条件下我们可以得到什么结论?
    如果一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
    高一数学月考的重要知识点分析3
    直线的倾斜角与斜率
    定义:
    x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。
    范围:
    倾斜角的取值范围是0°≤α<180°。
    理解:
    (1)注意“两个方向”:直线向上的方向、x轴的正方向;
    (2)规定当直线和x轴平行或重合时,它的倾斜角为0度。
    意义:
    ①直线的倾斜角,体现了直线对x轴正向的倾斜程度;
    ②在平面直角坐标系中,每一条直线都有一个确定的倾斜角;
    ③倾斜角相同,未必表示同一条直线。
    公式:
    k=tanα
    k>0时α∈(0°,90°)
    k<0时α∈(90°,180°)
    k=0时α=0°
    当α=90°时k不存在
    ax+by+c=0(a≠0)倾斜角为A,
    则tanA=-a/b,
    A=arctan(-a/b)
    当a≠0时,
    倾斜角为90度,即与X轴垂直
    练习题:
    1.直线l经过原点和(-1,1),则它的倾斜角为()
    A.45°
    B.135°
    C.45°或135°
    D.-45°
    【解析】选B.直线l的斜率为k==-1,所以直线的倾斜角为钝角135°.
    2.设直线l与x轴的交点是P,且倾斜角为α,若将此直线绕点P按逆时针方向旋转45°,得到直线的倾斜角为α+45°,则()
    A.0°≤α<180°
    B.0°≤α<135°
    C.0°<α≤135°
    D.0°<α<135°
    【解析】选D.直线l与x轴相交,可知α≠0°,
    又α与α+45°都是倾斜角,从而有
    得0°<α<135°.
    3.直线l的倾斜角是斜率为的直线的倾斜角的2倍,则l的斜率为()
    A.1B.1C.3D.4
    【解析】选B.因为tanα=,0°≤α<180°,所以α=30°,
    故2α=60°,所以k=tan60°=.故选B.