做题技巧数学初中总结


    借用《数学简史》的话,数学就是研究集合上各种结构(关系)的科学,可见,数学是一门抽象的学科,而严谨的过程是数学抽象的关键。那么接下来给大家分享一些关于做题技巧数学初中总结,希望对大家有所帮助。
    做题技巧数学初中总结
    1.对考试成功的标志要有明确的认识
    初中生身经无数次的考试,有成功也有失败,有考顺之时,也有别扭之日。那么什么是考试成功的标志呢?有人说是分数,有人说是名次,还有人讲只有超过某人才算……其实分数也有绝对值和相对值,绝对值是拿你自己的分数与及格线、满分线等比较的结果。相对值是将你自己的分数放在个人、班级、年级、全市等参照系中衡量其相对位置的结果。正是由于选择的参照系不同,有的同学越比信心越足,越比干劲越大,越比越乐观;而有的同学则越比越没信心,越比对自己越怀疑,越比热情越低。我的观点是,考试成功的标志有两条:一是,只要将自己的水平正常发挥出来了,就是一次成功的考试。二是,不要横向与其他同学比,要纵向自己与自己比。按着前述《良性循环学习法》中提到的,只要将第一类问题消灭到既定目标,就是一次成功的考试。
    2.确定考试目标
    有资料显示,每年中考考砸的考生约占25%。因此考试前确定目标时,虽然你心中有了上述两条考试成功的标志,但是对于第一条,你千万不要以为我可以100%的将自己的水平发挥出来,这才叫正常发挥,更不要幻想超常发挥。而应该按三层递进模式实施你的目标。三层递进模式就是:第一要保证不考砸。第二要正常发挥。正常发挥就是将自己的水平发挥出80%,发挥出80%已经很不简单了,发挥出80%无疑是没考砸。第三要向更高标准迈进,就是在保证已发挥出80%以后,再向发挥100%努力,再向超常发挥进发。虽然看似简单的三层,但我提出的是:不砸→80%→100%→超常。你若考试一上来,就想100%发挥,超常发挥,就可能出现全盘皆输的惨局。那么保证实施三层递进模式的一种最佳方法就是——三轮解题法。
    3.第一轮答题要敢于放弃三轮解题法的第一轮是,当你从前往后答题时,一看这题会,就答。一看这题不会,就不答。一看这题会,答的中间被困住卡壳了,就放。这是非常关键的一点。为什么。“会答的先答,不会答的后答’到了考场就做不到呢?要害在会与不会之间,难在会与不会的判定上。你想,会的题这很清楚。不会的题也很明了。
    4.敢于休息30秒
    当按着会做的则解,不会做的则放,卡壳的也放的方法,从前做到最后一道题之后,要敢于休息30秒。而且这个休息一定是老老实实地休息。比如,可以看看窗外的自然景观,树在摇曳,鸟在飞翔等。也可以想想自己喜欢的流行歌曲、电视剧等,当然不能想得太远,如果你想出十集去,考试早结束了。还可以采取一些深呼吸放松法、自我深度松驰法、积极的自我暗示法等。当然也可以什么都不想,就是闭目养神。在休息过程中要注意一点,采用什么休息方法悉听尊便,但千万不要想自己没做上来的某道题。
    为什么要用敢于休息30秒的“敢于”两字呢?是因为绝大多数同学每每都觉得时间不够,哪还敢挤出时间休息呀!其实恰恰相反,因为考试是高度的耗氧活动,对脑力、体力消耗很大,经过一段时间便会出现疲劳的现象,此时若-意志力来坚持,效率自然不高。经过休息就会使脑力得到恢复,使体力得到补充,经休息后再投入到解题过程中会高效发挥,所以敢于休息的同学反而时间就够了,这就是辩证法。这也正是俗话所说“磨刀不误砍柴工”的道理。敢于休息30秒也是心理状态提升的体现。考试时有的同学一听到其他同学快速翻页的声响就着急,眼睛的余光一看别的同学答得较快就发慌……现在我能做到不为所动,不被所引,我还敢于主动休息。急答出现差错,稳答一次成功,孰优孰劣是不言自明的道理。心理状态的提升需要一个磨炼过程。敢于休息30秒,就是心理状态走向成熟的开始,因此一定要敢于休息。休息后进人第二轮。
    5.第二轮查缺补漏
    第一轮将会做的题都做了,休息后还有没有会做的题了呢?回答是肯定的。依据有两条:一条是实践的依据;一条是理论的依据。
    任何一名考生几乎都曾有过这样的考试经历,在考试过程中某道题不会,不得不放弃了,但当答到后边某处时,忽悠一下想起前边那道题该怎么做了。或者是答到后边某道题,或者看见一道题的某句话、某个符号等,立刻唤醒了记忆,产生了顿悟,激发了灵感等,前边那道题就做出来了。这就是实践的依据。
    考试时,从答题开始到达到考试最佳思维状态即图中①点处需要一个上升过程,但是达到最佳思维状态后,有些人还能下来,如碰到一道4分左右的小题,自以为能做出来,但抠了半天就是做不出来,心情一团糟,这时绝不是最佳状态了,这时思维状态就下降了。有人一落千丈,如图中①点至②点沿虚线至④点处所示。也有人下降后还能升上去,再度达到最佳思维状态,如图中②点至③点处。而我们希望的理想状态是,角大点,尽快达到最佳思维状态,当达到最佳思维状态后,一直持续到考试结束。由于第一轮将会做的题做了,这时你的思维状态在0~①点之间,而决不会是①~②~④点之间。因此,经休息后仍旧有会做的题。
    实践和理论都证实,做过第一轮后仍旧会有能解出来的题。那么这时如第一轮所述,一看这题会,就答。一看这题不会,就不答。一看这题会,答的中间卡壳了,就放。这样从前做到最后一道题,接下来要再次敢于休息30秒。怎样休息前文已有详述不再赘述。
    6.第三轮换思路解题
    休息以后,要从前到后检查一遍自己做过的题。检查通过后,从理论上讲,你已经将自己的水平100%的发挥出来了,但实际上是80%。因为你检查虽然通过了,可还存在你没检查出来或检查错了的可能性,所以说是80%。虽然是80%,但已经很不简单了。在一次考试中,能将自己的水平发挥出80%就是一次成功的考试。你看体育竞赛,你观奥运会,有多少运动员,有多少运动队积多年训练之精华,蓄埋藏4年之心愿,只为了场上一搏。这一搏往往是发挥出平时训练水平的80%就可以取得胜利,就可以拿牌。对发挥出80%,你一定认识到,我的水平已经发挥出来了,我就是这个水平。我对得起自己,对得起父母,对得起……但如果这时考试还没结束,还有时间,也没有必要检查第二遍,这时决不能满足80%,要向100%进发,向超常发挥努力,做那些没做上来的题。但是做是做不出来了,已经做过两轮都没做出来,说明是难点,是“硬骨头”。对于难点和“硬骨头”采用常规做法已经不行了。这时要攻,要向难点和“硬骨头”发起总攻。那么如何攻呢?可用换思路解题法来攻。
    换思路解题法是基于这样的思考,当你解题时,仅仅将题做对是远远不够的,只有知道此题有几种解法,哪种是优化的解法才算优秀。许多人都曾有过这样的经历,解题时想起了这题出自哪章哪节,老师讲这点时是如何强调的,此题是考哪个或哪几个知识点,老师出这题想考什么……此时答这题感觉非常有把握,解题非常顺。这就是灵感。其实灵感也没有什么神秘,谁都曾经在考试过程中迸发过灵感的火花。当然如果你甚至能看透某题的陷阱和迷惑在哪里,你就是顶尖高手了。总之,此时已是不攻白不攻,不得白不得,攻一步进一寸,得1分是1分的时候了。但要换思路,看看哪题能攻下来攻哪题,哪点能拿下来拿哪点。想想它是出自哪章哪节?老师想考哪个知识点?各点之间是什么关系……这时要放飞你的记忆能力、领悟能力、多向联想能力、逆向思维能力、发散思维能力、创新能力等,多方位、多角度、多层次地思考。这时新的思路就有可能被打开,兴奋点就可能被激活,灵感的火花就可能如年三十的礼花一样在空中绽放。同学们,大胆尝试吧!你曾经有过的灵感定会一次次再现。
    7.变三轮解题法为自定理
    三轮解题法是一种全新的考试答题方法,是经过实践验证的科学、合理、有效的考试答题方法。认识掌握并运用了三轮解题法的同学都取得了不同程度的进步。但应用三轮解题法却要因人”而异,因科而异。若想灵活运用三轮解题法,第一要认识它的科学性、合理性、有效性;第二要实践,没有多次的实践是不能掌握这样一种全新的方法的;第三要总结,看看自己究竟是三轮好,还是二轮妙,或是四轮高。中间的两次休息,多长时间为宜。总之,绝不是一轮到底,不管会不会的题都要跟它拼上三、五回合的从小学沿用至今的考试答题方法了。这是一种全新的分轮次解题方法。对不同的科目,应用三轮解题法也应有所差异。比如数、理、化等是这样的三轮。而语文则应该是阅读题之前是一轮,做完就要检查结束。然后阅读题是一轮,最后一轮全身心地写作文。理想状态是作文写完,剩余时间少于5分钟。如果剩多了,说明你前边的时间分配不合理,要改进。英语、历史。政治、地理等的三轮也要因科而异。
    做题技巧数学初中常见方法
    1、配方法
    所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
    2、因式分解法
    因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角函数等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
    3、换元法
    换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
    4、判别式法与韦达定理
    一元二次方程ax2+bx+c=0(a、b、c∈R,a≠0)根的判别式△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至解析几何、三角函数运算中都有非常广泛的应用。
    韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
    5、待定系数法
    在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的重要方法之一。
    6、构造法
    在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
    7、反证法
    反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。
    用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。
    反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。
    归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。
    8、等(面或体)积法
    平面(立体)几何中讲的面积(体积)公式以及由面积(体积)公式推出的与面积(体积)计算有关的性质定理,不仅可用于计算面积(体积),而且用它来证明(计算)几何题有时会收到事半功倍的效果。运用面积(体积)关系来证明或计算几何题的方法,称为等(面或体)积法,它是几何中的一种常用方法。
    用归纳法或分析法证明几何题,其困难在添置辅助线。等(面或体)积法的特点是把已知和未知各量用面积(体积)公式联系起来,通过运算达到求证的结果。所以用等(面或体)积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。
    9、几何变换法
    在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。
    几何变换包括:(1)平移;(2)旋转;(3)对称。
    10.客观性题的解题方法
    选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。