高二数学理科的知识点


    种子的责任是开花结果,园丁的责任是料理花园,医生的责任是救死扶伤,老师的责任是传道授业。作为学生,我们的责任是努力学习,奋发向上,做一个优秀的学生。好好学习,下面是小编给大家带来的高二数学理科的知识点,希望能帮助到你!
    高二数学理科的知识点1
    等差数列
    对于一个数列{an},如果任意相邻两项之差为一个常数,那么该数列为等差数列,且称这一定值差为公差,记为d;从第一项a1到第n项an的总和,记为Sn。
    那么,通项公式为,其求法很重要,利用了“叠加原理”的思想:
    将以上n-1个式子相加,便会接连消去很多相关的项,最终等式左边余下an,而右边则余下a1和n-1个d,如此便得到上述通项公式。
    此外,数列前n项的和,其具体推导方式较简单,可用以上类似的叠加的方法,也可以采取迭代的方法,在此,不再复述。
    值得说明的是,前n项的和Sn除以n后,便得到一个以a1为首项,以d/2为公差的新数列,利用这一特点可以使很多涉及Sn的数列问题迎刃而解。
    等比数列
    对于一个数列{an},如果任意相邻两项之商(即二者的比)为一个常数,那么该数列为等比数列,且称这一定值商为公比q;从第一项a1到第n项an的总和,记为Tn。
    那么,通项公式为(即a1乘以q的(n-1)次方,其推导为“连乘原理”的思想:
    a2=a1_q,
    a3=a2_q,
    a4=a3_q,
    ````````
    an=an-1_q,
    将以上(n-1)项相乘,左右消去相应项后,左边余下an,右边余下a1和(n-1)个q的乘积,也即得到了所述通项公式。
    此外,当q=1时该数列的前n项和Tn=a1_n
    当q≠1时该数列前n项的和Tn=a1_(1-q^(n))/(1-q).
    高二数学理科的知识点2
    1、导数的定义:在点处的导数记作.
    2.导数的几何物理意义:曲线在点处切线的斜率
    ①k=f/(_0)表示过曲线y=f(_)上P(_0,f(_0))切线斜率。V=s/(t)表示即时速度。a=v/(t)表示加速度。
    3.常见函数的导数公式:
    4.导数的四则运算法则:
    5.导数的应用:
    (1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;
    注意:如果已知为减函数求字母取值范围,那么不等式恒成立。
    (2)求极值的步骤:
    ①求导数;
    ②求方程的根;
    ③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;
    (3)求可导函数值与最小值的步骤:
    ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。
    高二数学理科的知识点3
    考点一:求导公式。
    例1.f(_)是f(_)13_2_1的导函数,则f(1)的值是3
    考点二:导数的几何意义。
    例2.已知函数yf(_)的图象在点M(1,f(1))处的切线方程是y
    1_2,则f(1)f(1)2
    ,3)处的切线方程是例3.曲线y_32_24_2在点(1
    点评:以上两小题均是对导数的几何意义的考查。
    考点三:导数的几何意义的应用。
    例4.已知曲线C:y_33_22_,直线l:yk_,且直线l与曲线C相切于点_0,y0_00,求直线l的方程及切点坐标。
    点评:本小题考查导数几何意义的应用。解决此类问题时应注意“切点既在曲线上又在切线上”这个条件的应用。函数在某点可导是相应曲线上过该点存在切线的充分条件,而不是必要条件。
    考点四:函数的单调性。
    例5.已知f_a_3__1在R上是减函数,求a的取值范围。32
    点评:本题考查导数在函数单调性中的应用。对于高次函数单调性问题,要有求导意识。
    考点五:函数的极值。
    例6.设函数f(_)2_33a_23b_8c在_1及_2时取得极值。
    (1)求a、b的值;
    (2)若对于任意的_[0,3],都有f(_)c2成立,求c的取值范围。
    点评:本题考查利用导数求函数的极值。求可导函数f_的极值步骤:
    ①求导数f'_;
    ②求f'_0的根;③将f'_0的根在数轴上标出,得出单调区间,由f'_在各区间上取值的正负可确定并求出函数f_的极值。
    考点六:函数的最值。
    例7.已知a为实数,f__24_a。求导数f'_;(2)若f'10,求f_在区间2,2上的值和最小值。
    点评:本题考查可导函数最值的求法。求可导函数f_在区间a,b上的最值,要先求出函数f_在区间a,b上的极值,然后与fa和fb进行比较,从而得出函数的最小值。
    考点七:导数的综合性问题。
    例8.设函数f(_)a_3b_c(a0)为奇函数,其图象在点(1,f(1))处的切线与直线_6y70垂直,导函数
    (1)求a,b,c的值;f'(_)的最小值为12。
    (2)求函数f(_)的单调递增区间,并求函数f(_)在[1,3]上的值和最小值。
    点评:本题考查函数的奇偶性、单调性、二次函数的最值、导数的应用等基础知识,以及推理能力和运算能力。