高一数学老师讲解的知识点归纳


    课堂上通过老师的教学,理解所学内容在教材中的地位,弄清与前后知识的联系等,只有把握住教材,才能掌握学习的主动。以下是小编给大家整理的高一数学老师讲解的知识点归纳,希望大家能够喜欢!
    高一数学老师讲解的知识点归纳1
    一、指数函数
    (一)指数与指数幂的运算
    1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.
    当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).
    当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。
    注意:当是奇数时,当是偶数时,
    2.分数指数幂
    正数的分数指数幂的意义,规定:
    0的正分数指数幂等于0,0的负分数指数幂没有意义
    指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.
    3.实数指数幂的运算性质
    (二)指数函数及其性质
    1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R.
    注意:指数函数的底数的取值范围,底数不能是负数、零和1.
    2、指数函数的图象和性质
    高一数学老师讲解的知识点归纳2
    复数定义
    我们把形如a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。当虚部等于零时,这个复数可以视为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。复数域是实数域的代数闭包,也即任何复系数多项式在复数域中总有根。
    复数表达式
    虚数是与任何事物没有联系的,是绝对的,所以符合的表达式为:
    a=a+ia为实部,i为虚部
    复数运算法则
    加法法则:(a+bi)+(c+di)=(a+c)+(b+d)i;
    减法法则:(a+bi)-(c+di)=(a-c)+(b-d)i;
    乘法法则:(a+bi)·(c+di)=(ac-bd)+(bc+ad)i;
    除法法则:(a+bi)/(c+di)=[(ac+bd)/(c2+d2)]+[(bc-ad)/(c2+d2)]i.
    例如:[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=0,最终结果还是0,也就在数字中没有复数的存在。[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=z是一个函数。
    复数与几何
    ①几何形式
    复数z=a+bi被复平面上的点z(a,b)确定。这种形式使复数的问题可以借助图形来研究。也可反过来用复数的理论解决一些几何问题。
    ②向量形式
    复数z=a+bi用一个以原点O(0,0)为起点,点Z(a,b)为终点的向量OZ表示。这种形式使复数四则运算得到恰当的几何解释。
    ③三角形式
    复数z=a+bi化为三角形式
    高一数学老师讲解的知识点归纳3
    1.函数的奇偶性
    (1)若f(x)是偶函数,那么f(x)=f(-x);
    (2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);
    (3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);
    (4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;
    (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;
    2.复合函数的有关问题
    (1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
    (2)复合函数的单调性由“同增异减”判定;
    3.函数图像(或方程曲线的对称性)
    (1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;
    (2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;
    (3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
    (4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;
    (5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;
    (6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;
    4.函数的周期性
    (1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;
    (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;
    (3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;
    (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;
    (5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;
    (6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;
    5.方程k=f(x)有解k∈D(D为f(x)的值域);
    a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;
    (1)(a>0,a≠1,b>0,n∈R+);
    (2)logaN=(a>0,a≠1,b>0,b≠1);
    (3)logab的符号由口诀“同正异负”记忆;
    (4)alogaN=N(a>0,a≠1,N>0);
    6.判断对应是否为映射时,抓住两点:
    (1)A中元素必须都有象且;
    (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;
    7.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。
    8.对于反函数,应掌握以下一些结论:
    (1)定义域上的单调函数必有反函数;
    (2)奇函数的反函数也是奇函数;
    (3)定义域为非单元素集的偶函数不存在反函数;
    (4)周期函数不存在反函数;
    (5)互为反函数的两个函数具有相同的单调性;
    (6)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);
    9.处理二次函数的问题勿忘数形结合
    二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;
    10.依据单调性
    利用一次函数在区间上的保号性可解决求一类参数的范围问题;