高三数学老师讲解的知识点


    练习时应从自已的实际情况出发,循序渐进.应以基础题、中档题为主,适当做一些综合性较强的题以提高能力和思维品质,以下是小编给大家整理的高三数学老师讲解的知识点,希望能助你一臂之力!
    高三数学老师讲解的知识点1
    1.不等式的定义
    在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式.
    2.比较两个实数的大小
    两个实数的大小是用实数的运算性质来定义的,
    有a-b>0?;a-b=0?;a-b<0?.
    另外,若b>0,则有>1?;=1?;<1?.
    概括为:作差法,作商法,中间量法等.
    3.不等式的性质
    (1)对称性:a>b?;
    (2)传递性:a>b,b>c?;
    (3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;
    (4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;
    (5)可乘方:a>b>0?(n∈N,n≥2);
    (6)可开方:a>b>0?(n∈N,n≥2).
    复习指导
    1.“一个技巧”作差法变形的技巧:作差法中变形是关键,常进行因式分解或配方.
    2.“一种方法”待定系数法:求代数式的范围时,先用已知的代数式表示目标式,再利用多项式相等的法则求出参数,最后利用不等式的性质求出目标式的范围.
    3.“两条常用性质”
    (1)倒数性质:①a>b,ab>0?<;②a<0
    ③a>b>0,0;④0
    (2)若a>b>0,m>0,则
    ①真分数的性质:<;>(b-m>0);
    ②假分数的性质:>;<(b-m>0).
    高三数学老师讲解的知识点2
    1.对于函数f(x),如果对于定义域内任意一个x,都有f(-x)=-f(x),那么f(x)为奇函数;
    2.对于函数f(x),如果对于定义域内任意一个x,都有f(-x)=f(x),那么f(x)为偶函数;
    3.一般地,对于函数y=f(x),定义域内每一个自变量x,都有f(a+x)=2b-f(a-x),则y=f(x)的图象关于点(a,b)成中心对称;
    4.一般地,对于函数y=f(x),定义域内每一个自变量x都有f(a+x)=f(a-x),则它的图象关于x=a成轴对称。
    5.函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;
    6.由函数奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).
    高三数学老师讲解的知识点3
    1、三类角的求法:
    ①找出或作出有关的角。
    ②证明其符合定义,并指出所求作的角。
    ③计算大小(解直角三角形,或用余弦定理)。
    2、正棱柱——底面为正多边形的直棱柱
    正棱锥——底面是正多边形,顶点在底面的射影是底面的中心。
    正棱锥的计算集中在四个直角三角形中:
    3、怎样判断直线l与圆C的位置关系?
    圆心到直线的距离与圆的半径比较。
    直线与圆相交时,注意利用圆的“垂径定理”。
    4、对线性规划问题:作出可行域,作出以目标函数为截距的直线,在可行域内平移直线,求出目标函数的最值。
    不看后悔!清华名师揭秘学好高中数学的方法
    培养兴趣是关键。学生对数学产生了兴趣,自然有动力去钻研。如何培养兴趣呢?
    (1)欣赏数学的美感
    比如几何图形中的对称、变换前后的不变量、概念的严谨、逻辑的严密……
    通过对旋转变换及其不变量的讨论,我们可以证明反比例函数、“对勾函数”的图象都是双曲线——平面上到两个定点的距离之差的绝对值为定值(小于两个定点之间的距离)的点的集合。
    (2)注意到数学在实际生活中的应用。
    例如和日常生活息息相关的等额本金、等额本息两种不同的还款方式,用数列的知识就可以理解.
    学好数学,是现代公民的基本素养之一啊.
    (3)采用灵活的教学手段,与时俱进。
    利用多种技术手段,声、光、电多管齐下,老师可以借此把一些知识讲得更具体形象,学生也更容易接受,理解更深。
    (4)适当看一些科普类的书籍和文章。
    比如:学圆锥曲线的时候,可以看看一些建筑物的外形,它们被平面所截出的曲线往往就是各种圆锥曲线,很多文章对此都有介绍;还有圆锥曲线光学性质的应用,这方面的文章也不少。