高三数学知识点例题


    与高一高二不同之处在于,此时复习力学部分知识是为了更好的与高考考纲相结合,尤其水平中等或中等偏下的学生,此时需要进行查漏补缺,但也需要同时提升能力,填补知识、技能的空白。小编高三频道为你精心准备了《高三上册数学知识点整理》助你金榜题名!
    
    高三数学知识点例题
    (1)不等关系
    感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景。
    (2)一元二次不等式
    ①经历从实际情境中抽象出一元二次不等式模型的过程。
    ②通过函数图象了解一元二次不等式与相应函数、方程的联系。
    ③会解一元二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图。
    (3)二元一次不等式组与简单线性规划问题
    ①从实际情境中抽象出二元一次不等式组。
    ②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组(参见例2)。
    ③从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决(参见例3)。
    (4)基本不等式:
    ①探索并了解基本不等式的证明过程。
    ②会用基本不等式解决简单的(小)值问题。
    高三数学知识点例题
    轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性)。
    一、求动点的轨迹方程的基本步骤。
    1.建立适当的坐标系,设出动点M的坐标;
    2.写出点M的集合;
    3.列出方程=0;
    4.化简方程为最简形式;
    5.检验。
    二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
    1.直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
    2.定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
    3.相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
    4.参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
    5.交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
    求动点轨迹方程的一般步骤:
    ①建系——建立适当的坐标系;
    ②设点——设轨迹上的任一点P(x,y);
    ③列式——列出动点p所满足的关系式;
    ④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;
    ⑤证明——证明所求方程即为符合条件的动点轨迹方程。
    高三数学知识点例题
    1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
    2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:
    方程有实数根函数的图象与轴有交点函数有零点.
    3、函数零点的求法:
    求函数的零点:
    (1)(代数法)求方程的实数根;
    (2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.
    4、二次函数的零点:
    二次函数.
    1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.
    2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.
    3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.