八年级数学青岛版知识点


    天才就是勤奋曾经有人这样说过。如果这话不完全正确,那至少在很大程度上是正确的。学习,就算是天才,也是需要不断练习与记忆的。下面是小编给大家整理的一些八年级数学的知识点,希望对大家有所帮助。
    初二数学下册知识点
    统计的初步认识
    1、折线统计图的特点:能获取数据变化情况的信息,并进行简单的预测。
    2、折线统计图的方法:在方格纸中,根据所给出的数据把点标出来,再用线将点连接起来,要顺次连接。
    3、能够看出折线统计图所提供的信息,并回答相关的问题。
    补充内容:
    1、条形统计图与折线统计图的不同:条形统计图用直条表示数量的多少,折线统计图用折线表示数量的增减变化情况。
    2、初步了解复式折线统计图,能够从中获得相应的信息,回答提出的问题。
    课后练习
    1.统计学的基本涵义是(D)。
    A.统计资料
    B.统计数字
    C.统计活动
    D.是一门处理数据的方法和技术的科学,也可以说统计学是一门研究“数据”的科学,任务是如何有效地收集、整理和分析这些数据,探索数据内在的数量规律性,对所观察的现象做出推断或预测,直到为采取决策提供依据。
    2.要了解某一地区国有工业企业的生产经营情况,则统计总体是(B)。
    A.每一个国有工业企业
    B.该地区的所有国有工业企业
    C.该地区的所有国有工业企业的生产经营情况
    D.每一个企业
    3.要了解20个学生的学习情况,则总体单位是(C)。
    A.20个学生
    B.20个学生的学习情况
    C.每一个学生
    D.每一个学生的学习情况
    4.下列各项中属于数量标志的是(B)。
    A.性别
    B.年龄
    C.职称
    D.健康状况
    5.总体和总体单位不是固定不变的,由于研究目的改变(A)。
    A.总体单位有可能变换为总体,总体也有可能变换为总体单位
    B.总体只能变换为总体单位,总体单位不能变换为总体
    C.总体单位不能变换为总体,总体也不能变换为总体单位
    D.任何一对总体和总体单位都可以互相变换
    6.以下岗职工为总体,观察下岗职工的性别构成,此时的标志是(C)。
    A.男性职工人数
    B.女性职工人数
    C.下岗职工的性别
    D.性别构成
    初二数学第一学期知识点
    【第十三章实数】
    ※算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么正数x叫做a的算术平方根,记作.0的算术平方根为0;从定义可知,只有当a≥0时,a才有算术平方根.
    ※平方根:一般地,如果一个数x的平方根等于a,即x2=a,那么数x就叫做a的平方根.
    ※正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根.
    ※正数的立方根是正数;0的立方根是0;负数的立方根是负数.
    数a的相反数是-a,一个正实数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0
    【第十四章一次函数】
    1.画函数图象的一般步骤:一、列表(一次函数只用列出两个点即可,其他函数一般需要列出5个以上的点,所列点是自变量与其对应的函数值),二、描点(在直角坐标系中,以自变量的值为横坐标,相应函数的值为纵坐标,描出表格中的个点,一般画一次函数只用两点),三、连线(依次用平滑曲线连接各点).
    2.根据题意写出函数解析式:关键找到函数与自变量之间的等量关系,列出等式,既函数解析式.
    3.若两个变量x,y间的关系式可以表示成y=kx+b(k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量).特别地,当b=0时,称y是x的正比例函数.
    4.正比列函数一般式:y=kx(k≠0),其图象是经过原点(0,0)的一条直线.
    5.正比列函数y=kx(k≠0)的图象是一条经过原点的直线,当k>0时,直线y=kx经过第一、三象限,y随x的增大而增大,当k<0时,直线y=kx经过第二、四象限,y随x的增大而减小,在一次函数y=kx+b中:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.
    6.已知两点坐标求函数解析式(待定系数法求函数解析式):
    把两点带入函数一般式列出方程组
    求出待定系数
    把待定系数值再带入函数一般式,得到函数解析式
    7.会从函数图象上找到一元一次方程的解(既与x轴的交点坐标横坐标值),一元一次不等式的解集,二元一次方程组的解(既两函数直线交点坐标值)
    初二数学学习方法技巧
    1、配方法
    所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
    2、因式分解法
    因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
    3、换元法
    换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂4、判别式法与韦达定理
    一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
    韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
    5、待定系数法
    在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。
    6、构造法
    在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
    7、反证法
    反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。
    反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;/至少有两个。
    归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。