高三数学期末知识点


    伟大的成绩和辛勤劳动是成正比例的,有一分劳动就有一分收获,积累,从少到多,奇迹就可以创造出来。学习也是一样的,需要积累,从少变多。下面是小编给大家整理的一些高三数学的知识点,希望对大家有所帮助。
    
    高三年级数学知识点归纳
    不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用。因此不等式应用问题体现了一定的综合性、灵活多样性,对数学各部分知识融会贯通,起到了很好的促进作用。在解决问题时,要依据题设与结论的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明。不等式的应用范围十分广泛,它始终贯串在整个中学数学之中。
    诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。
    知识整合
    1。解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化。在解不等式中,换元法和图解法是常用的技巧之一。通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰。
    2。整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法。方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用。
    3。在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰。
    4。证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法。要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点。比较法的一般步骤是:作差(商)→变形→判断符号(值)。
    人教版高三数学复习知识点
    1、三类角的求法:
    ①找出或作出有关的角。
    ②证明其符合定义,并指出所求作的角。
    ③计算大小(解直角三角形,或用余弦定理)。
    2、正棱柱——底面为正多边形的直棱柱
    正棱锥——底面是正多边形,顶点在底面的射影是底面的中心。
    正棱锥的计算集中在四个直角三角形中:
    3、怎样判断直线l与圆C的位置关系?
    圆心到直线的距离与圆的半径比较。
    直线与圆相交时,注意利用圆的“垂径定理”。
    4、对线性规划问题:作出可行域,作出以目标函数为截距的直线,在可行域内平移直线,求出目标函数的最值。
    不看后悔!清华揭秘学好高中数学的方法
    培养兴趣是关键。学生对数学产生了兴趣,自然有动力去钻研。如何培养兴趣呢?
    (1)欣赏数学的美感
    比如几何图形中的对称、变换前后的不变量、概念的严谨、逻辑的严密……
    通过对旋转变换及其不变量的讨论,我们可以证明反比例函数、“对勾函数”的图象都是双曲线——平面上到两个定点的距离之差的绝对值为定值(小于两个定点之间的距离)的点的集合。
    (2)注意到数学在实际生活中的应用。
    例如和日常生活息息相关的等额本金、等额本息两种不同的还款方式,用数列的知识就可以理解.
    学好数学,是现代公民的基本素养之一啊.
    (3)采用灵活的教学手段,与时俱进。
    利用多种技术手段,声、光、电多管齐下,老师可以借此把一些知识讲得更具体形象,学生也更容易接受,理解更深。
    (4)适当看一些科普类的书籍和文章。
    比如:学圆锥曲线的时候,可以看看一些建筑物的外形,它们被平面所截出的曲线往往就是各种圆锥曲线,很多文章对此都有介绍;还有圆锥曲线光学性质的应用,这方面的文章也不少。
    高三年级数学知识点总结
    1、直线的倾斜角
    定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°
    2、直线的斜率
    ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。
    ②过两点的直线的斜率公式:
    注意下面四点:
    (1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
    (2)k与P1、P2的顺序无关;
    (3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
    (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
    3、直线方程
    点斜式:
    直线斜率k,且过点
    注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。