部编版初一数学知识点归纳


    知识是取之不尽,用之不竭的。只有限度地挖掘它,才能体会到学习的乐趣。任何一门学科的知识都需要大量的记忆和练习来巩固。虽然辛苦,但也伴随着快乐!下面是小编给大家整理的一些初一数学的知识点,希望对大家有所帮助。
    初中一年级数学上册知识点
    二元一次方程组
    1.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.注意:一般说二元一次方程有无数个解.
    2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组.
    3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.注意:一般说二元一次方程组只有解(即公共解).
    4.二元一次方程组的解法:
    (1)代入消元法;(2)加减消元法;
    (3)注意:判断如何解简单是关键.
    ※5.一次方程组的应用:
    (1)对于一个应用题设出的未知数越多,列方程组可能容易一些,但解方程组可能比较麻烦,反之则难列易解
    (2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;
    (3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系.
    一元一次不等式(组)
    1.不等式:用不等号,把两个代数式连接起来的式子叫不等式.
    2.不等式的基本性质:
    不等式的基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;
    不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变;
    不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向要改变.
    3.不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式所有解的集合,叫做这个不等式的解集.
    4.一元一次不等式:只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是ax+b0或ax+b0,(a0).
    5.一元一次不等式的解法:一元一次不等式的解法与解一元一次方程的解法类似,但一定要注意不等式性质3的应用;注意:在数轴上表示不等式的解集时,要注意空圈和实点.
    七年级下册数学知识点
    相似变换
    ※1、如果选用同一个长度单位量得两条线段AB,CD的长度分别是m、n,那么就说这两条线段的比AB:CD=m:n,或写成.
    ※2、四条线段a、b、c、d中,如果a与b的比等于c与d的比,即,那么这四条线段a、b、c、d叫做成比例线段,简称比例线段.
    ※3、注意点:
    ①a:b=k,说明a是b的k倍;
    ②由于线段a、b的长度都是正数,所以k是正数;
    ③比与所选线段的长度单位无关,求出时两条线段的长度单位要一致;
    ④除了a=b之外,a:b≠b:a,与互为倒数;
    平移变换
    (1)图形平移前后的形状和大小没有变化,只是位置发生变化;
    (2)图形平移后,对应点连成的线段平行且相等(或在同一直线上)
    (3)多次平移相当于一次平移。
    (4)多次对称后的图形等于平移后的图形。
    (5)平移是由方向,距离决定的。
    (6)经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等。
    这种将图形上的所有点都按照某个方向作相同距离的位置移动,叫做图形的平移运动,简称为平移
    【篇三:相似三角形】
    ※1、在相似多边形中,最为简简单的就是相似三角形.
    ※2.对应角相等、对应边成比例的三角形叫做相似三角形.相似三角形对应边的比叫做相似比.
    ※3、全等三角形是相似三角的特例,这时相似比等于1.注意:证两个相似三角形,与证两个全等三角形一样,应把表示对应顶点的字母写在对应的位置上.
    ※4、相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比.
    ※5、相似三角形周长的比等于相似比.
    ※6、相似三角形面积的比等于相似比的平方.
    七年级上册数学复习资料
    有理数
    ★有理数的分类
    1.如果按定义分,有理数可以分为整数(正整数;负整数;0)和分数(正分数,负分数)。
    如果按正、负分,有理数可以分为正有理数(正整数;正分数)、0、负有理数(负整数;负分数)。
    2.所有的有理数都可以用分数表示,π不是有理数。
    数轴
    ★1.数轴的定义:规定了原点、正方向、单位长度的直线叫做数轴。
    相反数
    1.只有符号不同的两个数叫做互为相反数。(0的相反数是0)
    绝对值
    1.数轴上一点a到原点的距离表示a的绝对值。
    ★2.绝对值的性质:非负性。
    3.正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
    有理数的大小
    1.正数大于0,负数小于0,正数大于负数。
    2.两个负数,绝对值大的反而小。
    有理数的加法
    1.同号两数相加,取相同的符号,并把绝对值相加。
    2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0。一个数同0相加,仍得这个数。
    3.在有理数的加法中,
    加法交换率:两个数相加,交换加数的位置,和不变。
    加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
    有理数的减法
    减去一个数,等于加这个数的相反数。
    ★有理数的乘法
    两数相乘,同号得正,异号得负,并把绝对值相乘。任何数与0相乘后得0。
    倒数:乘积是1的两个数互为倒数。
    乘法交换律:乘法交换律两个数相乘,交换因数的位置,积不变。
    乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变。
    乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把
    积相加。
    ★有理数的除法
    除以某个不为0数等于乘与这个数的倒数两数相除
    同号为正,异号为负,并把绝对值相除
    0除以任何一个不等于0的数,都等于0。
    有理数的混合运算
    1.运算顺序:先算乘方,再算乘除,最后算加减。如果是同级运算,则按从左到右的运算顺序计算。如果有括号,先算小括号,再算中括号,最后算大括号。
    有理数的乘方
    ★1.求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在
    做a的n次方时的结果时,也可以读作a的n次幂。
    ★2.负数的奇次幂是负数,负数的偶次幂是正数。
    正数的任何次幂都是正数,0的任何正整数次幂都是0
    科学计数法
    1.科学记数法将一个数字表示成a×10的n次幂的形式,其中a是整数数位只有一位的数,n是正整数,这种中,a叫底数,叫做指数。当看记数方法叫科学记数法。
    近似数
    1.一个数与准确数相近(比准确数略多或者略少些),这一个数称之为近似数。
    ★2.有效数字:在一个数中,从左边第一个不是0的数字起,到精确到位数止,所有的数字,都叫这个数字的有效数字。