高一数学总复习知识点是什么


    高中数学对于初中数学来说,内容增加很多,抽象性、理论性更强,因此导致部分同学进入高中后很不适应。所以会有很多人不想动,不想碰,看到数学就翻过,以下是小编给大家整理的高一数学总复习知识点,希望能帮助到你!
    高一数学总复习知识点1
    两个平面的位置关系:
    (1)两个平面互相平行的定义:空间两平面没有公共点
    (2)两个平面的位置关系:
    两个平面平行——没有公共点;两个平面相交——有一条公共直线。
    a、平行
    两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
    两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。
    b、相交
    二面角
    (1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。
    (2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。二面角的取值范围为[0°,180°]
    (3)二面角的棱:这一条直线叫做二面角的棱。
    (4)二面角的面:这两个半平面叫做二面角的面。
    (5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。
    (6)直二面角:平面角是直角的二面角叫做直二面角。
    两平面垂直
    两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。记为⊥
    两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直
    两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。
    二面角求法:直接法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(注意求出的角与所需要求的角之间的等补关系)
    高一数学总复习知识点2
    函数的图象是函数的直观体现,应加强对作图、识图、用图能力的培养,培养用数形结合的思想方法解决问题的意识.
    求作图象的函数表达式
    与f(x)的关系
    由f(x)的图象需经过的变换
    y=f(x)±b(b>0)
    沿y轴向平移b个单位
    y=f(x±a)(a>0)
    沿x轴向平移a个单位
    y=-f(x)
    作关于x轴的对称图形
    y=f(|x|)
    右不动、左右关于y轴对称
    y=|f(x)|
    上不动、下沿x轴翻折
    y=f-1(x)
    作关于直线y=x的对称图形
    y=f(ax)(a>0)
    横坐标缩短到原来的,纵坐标不变
    y=af(x)
    纵坐标伸长到原来的|a|倍,横坐标不变
    y=f(-x)
    作关于y轴对称的图形
    【例】定义在实数集上的函数f(x),对任意x,y∈R,有f(x+y)+f(x-y)=2f(x)·f(y),且f(0)≠0.
    ①求证:f(0)=1;
    ②求证:y=f(x)是偶函数;
    ③若存在常数c,使求证对任意x∈R,有f(x+c)=-f(x)成立;试问函数f(x)是不是周期函数,如果是,找出它的一个周期;如果不是,请说明理由.
    思路分析:我们把没有给出解析式的函数称之为抽象函数,解决这类问题一般采用赋值法.
    解答:①令x=y=0,则有2f(0)=2f2(0),因为f(0)≠0,所以f(0)=1.
    ②令x=0,则有f(x)+f(-y)=2f(0)·f(y)=2f(y),所以f(-y)=f(y),这说明f(x)为偶函数.
    ③分别用(c>0)替换x、y,有f(x+c)+f(x)=
    所以,所以f(x+c)=-f(x).
    两边应用中的结论,得f(x+2c)=-f(x+c)=-[-f(x)]=f(x),
    所以f(x)是周期函数,2c就是它的一个周期.
    高一数学总复习知识点3
    (1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。
    (2)指数函数的值域为大于0的实数集合。
    (3)函数图形都是下凹的。
    (4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
    (5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。
    (6)函数总是在某一个方向上无限趋向于X轴,永不相交。
    (7)函数总是通过(0,1)这点。
    (8)显然指数函数_。
    奇偶性
    定义
    一般地,对于函数f(x)
    (1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
    (2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
    (3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
    (4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。