总结高一数学必考知识点


    总结是把一定阶段内的有关情况分析研究,做出有指导性结论的书面材料,通过它可以全面地、系统地了解以往的学习和工作情况,因此十分有必须要写一份总结哦。下面是小编给大家带来的总结高一数学必考知识点 ,以供大家参考!
    总结高一数学必考知识点
    1.“包含”关系—子集
    注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
    反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA
    2.“相等”关系(5≥5,且5≤5,则5=5)
    实例:设A={x|x2-1=0}B={-1,1}“元素相同”
    结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B
    ①任何一个集合是它本身的子集。AíA
    ②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)
    ③如果AíB,BíC,那么AíC
    ④如果AíB同时BíA那么A=B
    3.不含任何元素的集合叫做空集,记为Φ
    规定:空集是任何集合的子集,空集是任何非空集合的.真子集。
    高一数学知识点重点总结归纳
    幂函数定义:
    形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
    定义域和值域:
    当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域
    性质:
    对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:
    首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:
    排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;
    排除了为0这种可能,即对于x<0和x>0的所有实数,q不能是偶数;
    排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。
    总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:
    如果a为任意实数,则函数的定义域为大于0的所有实数;
    如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
    在x大于0时,函数的值域总是大于0的实数。
    在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
    而只有a为正数,0才进入函数的值域。
    由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况.
    可以看到:
    (1)所有的图形都通过(1,1)这点。
    (2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。
    (3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。
    (4)当a小于0时,a越小,图形倾斜程度越大。
    (5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。
    (6)显然幂函数。
    高一数学必修1知识点归纳
    一:集合的含义与表示
    1、集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。
    把研究对象统称为元素,把一些元素组成的总体叫集合,简称为集。
    2、集合的中元素的三个特性:
    (1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。
    (2)元素的互异性:一个给定集合中的元素是的,不可重复的。
    (3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合
    3、集合的表示:{…}
    (1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
    (2)集合的表示方法:列举法与描述法。
    a、列举法:将集合中的元素一一列举出来{a,b,c……}
    b、描述法:
    ①区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合。
    {x?R|x-3>2},{x|x-3>2}
    ②语言描述法:例:{不是直角三角形的三角形}
    ③Venn图:画出一条封闭的曲线,曲线里面表示集合。
    4、集合的分类:
    (1)有限集:含有有限个元素的集合
    (2)无限集:含有无限个元素的集合
    (3)空集:不含任何元素的集合
    5、元素与集合的关系:
    (1)元素在集合里,则元素属于集合,即:a?A
    (2)元素不在集合里,则元素不属于集合,即:a¢A
    注意:常用数集及其记法:
    非负整数集(即自然数集)记作:N
    正整数集N_或N+
    整数集Z
    有理数集Q
    实数集R