高考数学答题技巧及时间分配


    部分考生在高考中,数学总是得不到高分,通常有几种原因造成,一种是数学考试时间分配不合理,高考答题时间不充裕,一种是遇到难题就被困扰住,无法继续后面的答题,那么接下来给大家分享一些关于高考数学答题技巧及时间分配,希望对大家有所帮助。
    高考数学答题技巧及时间分配
    合理分配数学答题时间
    大家都知道,高考数学考试分为选择题、填空题、解答题三大部分,由于三部分所占的分数份额不同,难度不同,考生可以就自己平时的速度,将这三者的答题时间合理分配。这三个部分,相对来说,高考数学选择题是可以通过排除法、答案代入法、任意数字代入法等方式得到答案,需要的时间也相对较少,填空题的计算过程通常不会太复杂,每个空格所占的分数也不会很高,因此,高考中要适当地将时间留给更好做数学解答题。
    做题选择由简到难的方式
    高考考生们,想要在高考中取得高分,切记遇到难题不愿意、不甘心放弃,要懂得适当地迂回战术,遇到难题先将其略过,等到其他题目都完成以后,利用剩下的时间再慢慢研究,避免得不偿失的状况出现,还可以节省时间,分配出高考数学难题答题时间。并且,数学解答题每写出一个步骤,所得到的分数,都远远可能高于一道数学选择题或者填空题的分数,因此,做题也要分清轻重。
    养成检查的好习惯
    有很大一部分高考考生,都会在公布答案之后大呼遗憾,因为很多失分都是不应该的,都是不经意地疏忽造成的。所以,当这种习惯养成,即便是在紧张的高考场上,也能够自然而然地以平和的心态检查下去,减少不必要的数学失分情况出现。
    高考数学填空题答题套路和技巧
    1.直接法:这是解填空题的基本方法,它是直接从题设条件出发、利用定义、定理、性质、公式等知识,通过变形、推理、运算等过程,直接得到结果。
    2.特殊化法:当填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,可以把题中变化的不定量用特殊值代替,即可以得到正确结果。
    3.数形结合法:对于一些含有几何背景的填空题,若能数中思形,以形助数,则往往可以简捷地解决问题,得出正确的结果。
    4.等价转化法:通过“化复杂为简单、化陌生为熟悉”,将问题等价地转化成便于解决的问题,从而得出正确的结果。
    5.图像法:借助图形的直观形,通过数形结合,迅速作出判断的方法称为图像法。文氏图、三角函数线、函数的图像及方程的曲线等,都是常用的图形。
    6.构造法:在解题时有时需要根据题目的具体情况,来设计新的模式解题,这种设计工作,通常称之为构造模式解法,简称构造法。
    高考数学解答题套路和技巧
    1.三角变换与三角函数的性质问题
    解题方法:①不同角化同角;②降幂扩角 ;③化f(x)=Asin(ωx+φ)+h ;④结合性质求解。
    答题步骤:
    ①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。
    ②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件。
    ③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。
    2.解三角形问题
    解题方法:
    (1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。
    (2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。
    答题步骤:
    ①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。
    ②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。
    ③求结果。
    3.数列的通项、求和问题
    解题方法:①先求某一项,或者找到数列的关系式;②求通项公式;③求数列和通式。
    答题步骤:
    ①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。
    ②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。
    ③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。
    ④写步骤:规范写出求和步骤。
    4.离散型随机变量的均值与方差
    解题思路:
    (1)①标记事件;②对事件分解;③计算概率。
    (2)①确定ξ取值;②计算概率;③得分布列;④求数学期望。
    答题步骤:
    ①定元:根据已知条件确定离散型随机变量的取值。
    ②定性:明确每个随机变量取值所对应的事件。
    ③定型:确定事件的概率模型和计算公式。
    ④计算:计算随机变量取每一个值的概率。
    ⑤列表:列出分布列。
    ⑥求解:根据均值、方差公式求解其值。
    5.圆锥曲线中的范围问题
    解题思路;①设方程;②解系数;③得结论。
    答题步骤:
    ①提关系:从题设条件中提取不等关系式。
    ②找函数:用一个变量表示目标变量,代入不等关系式。
    ③得范围:通过求解含目标变量的不等式,得所求参数的范围。
    6.解析几何中的探索性问题
    解题思路:①一般先假设这种情况成立(点存在、直线存在、位置关系存在等);②将上面的假设代入已知条件求解;③得出结论。
    答题步骤:
    ①先假定:假设结论成立。
    ②再推理:以假设结论成立为条件,进行推理求解。
    ③下结论:若推出合理结果,经验证成立则肯。 定假设;若推出矛盾则否定假设。