高三高考数学上册知识点


    学习从来无捷径,循序渐进登高峰。如果说学习一定有捷径,那只能是勤奋,因为努力永远不会骗人。学习需要勤奋,做任何事情都需要勤奋。下面是小编给大家整理的一些高三数学的知识点,希望对大家有所帮助。
    
    高三数学必修一知识点
    1.“包含”关系—子集
    注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
    反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA
    2.“相等”关系:A=B(5≥5,且5≤5,则5=5)
    实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”
    即:①任何一个集合是它本身的子集。A(A
    ②真子集:如果A(B,且A(B那就说集合A是集合B的真子集,记作AB(或BA)
    ③如果A(B,B(C,那么A(C
    ④如果A(B同时B(A那么A=B
    3.不含任何元素的集合叫做空集,记为Φ
    规定:空集是任何集合的子集,空集是任何非空集合的真子集。
    有n个元素的集合,含有2n个子集,2n-1个真子集
    高三上册数学知识点整理
    轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性)。
    一、求动点的轨迹方程的基本步骤。
    1.建立适当的坐标系,设出动点M的坐标;
    2.写出点M的集合;
    3.列出方程=0;
    4.化简方程为最简形式;
    5.检验。
    二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
    1.直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
    2.定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
    3.相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
    4.参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
    5.交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
    求动点轨迹方程的一般步骤:
    ①建系——建立适当的坐标系;
    ②设点——设轨迹上的任一点P(x,y);
    ③列式——列出动点p所满足的关系式;
    ④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;
    ⑤证明——证明所求方程即为符合条件的动点轨迹方程。
    高三数学重要知识点整理
    一、求动点的轨迹方程的基本步骤
    ⒈建立适当的坐标系,设出动点M的坐标;
    ⒉写出点M的集合;
    ⒊列出方程=0;
    ⒋化简方程为最简形式;
    ⒌检验。
    二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
    ⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
    ⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
    ⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
    ⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
    ⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
    直译法:求动点轨迹方程的一般步骤
    ①建系——建立适当的坐标系;
    ②设点——设轨迹上的任一点P(x,y);
    ③列式——列出动点p所满足的关系式;
    ④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;
    ⑤证明——证明所求方程即为符合条件的动点轨迹方程。