高考数学难点要点概括


    数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。这次小编给大家整理了高考数学难点要点概括,供大家阅读参考。
    
    高考数学难点要点概括
    第一、基本公式用错等差数列的首项为a1、公差为d,则其通项公式an=a1+(n-1)d,前n项和公式Sn=na1+n(n-1)d/2=(a1+an)d/2;
    等比数列的首项为a1、公比为q,则其通项公式an=a1pn-1,当公比q≠1时,前n项和公式Sn=a1(1-pn)/(1-q)=(a1-anq)/(1-q),当公比q=1时,前n项和公式Sn=na1。
    在数列的基础题中,等差、等比数列公式是解题的根本,一旦用错了公式,解题也失去了方向。
    第二、an,Sn关系不清致误在数列题中,数列的通项an与其前n项和Sn之间存在着关系。这个关系对任意数列都是成立的,但要注意的是关系式分段。在n=1和n≥2时,关系式具有完全不同的表现形式,这也是考生答题过程中经常出错的点,在使用关系式时,要牢牢记住其“分段”的特点。
    当题目中给出了数列{an}的an与Sn之间的关系时,这两者之间可以进行相互转换,知道了an的具体表达式,就可以通过数列求和的方法求出Sn;知道了Sn,也可以求出an。在答题时,一定要体会这种转换的相互性。
    第三、等差、等比数列性质理解错误等差数列的前n项和在公差不为0时是关于n的常数项为0的二次函数。一般来说,有结论“若数列{an}的前N项和Sn=an2+bn+c(a,b,c∈R),则数列{an}为等差数列的充要条件是c=0”;在等差数列中,Sm,S2m-Sm,S3m-S2m(m∈N_是等差数列。
    解答此类题时,要求考生全面考虑问题,考虑各种可能性,认为正确的就给予证明,不正确就举出反例驳斥。等比数列中,公比等于-1是特殊情况,在解决相关题型问题时值得注意。
    第四、数列中最值错误数列的通项公式、前n项和公式都是关于正整数的函数,考生要善于从函数的观点认识和理解数列问题。但是很多同学在答题时容易忽视n为正整数的特点,或即使考虑了n为正整数,但对于n取何值能够取到最值求解时出错。
    在正整数n的二次函数中,其取最值的点要根据正整数距离二次函数的对称轴远近而定。
    第五、错位相减求和时项数处理不当错位相减求和法适用于“数列是由一个等差数列和一个等比数列对应项的乘积所组成的,求其前n项和”的题型。设和式为Sn,在和式两端同时乘以等比数列的公比得到另一个和式,两个和式错一位相减,得到的和式要分成三部分:原来数列的第一项;一个等比数列的前(n-1)项的和以及原来数列的第n项乘以公比后在作差时出现的。
    考生在用错位相减法求数列的和时,一定要注意处理好这三个部分,否则很容易就会出错。
    高考数学难点复习
    单调性
    ⑴若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。需代入驻点左右两边的数值求导数正负判断单调性。
    ⑵若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小于等于零。
    根据微积分基本定理,对于可导的函数,有:
    如果函数的导函数在某一区间内恒大于零(或恒小于零),那么函数在这一区间内单调递增(或单调递减),这种区间也称为函数的单调区间。导函数等于零的点称为函数的驻点,在这类点上函数可能会取得极大值或极小值(即极值可疑点)。进一步判断则需要知道导函数在附近的符号。对于满足的一点,如果存在使得在之前区间上都大于等于零,而在之后区间上都小于等于零,那么是一个极大值点,反之则为极小值点。
    x变化时函数(蓝色曲线)的切线变化。函数的导数值就是切线的斜率,绿色代表其值为正,红色代表其值为负,黑色代表值为零。
    凹凸性
    可导函数的凹凸性与其导数的单调性有关。如果函数的导函数在某个区间上单调递增,那么这个区间上函数是向下凹的,反之则是向上凸的。如果二阶导函数存在,也可以用它的正负性判断,如果在某个区间上恒大于零,则这个区间上函数是向下凹的,反之这个区间上函数是向上凸的。曲线的凹凸分界点称为曲线的拐点。
    高考数学要点
    1.1柱、锥、台、球的结构特征
    1.2空间几何体的三视图和直观图
    11三视图:
    正视图:从前往后
    侧视图:从左往右
    俯视图:从上往下
    22画三视图的原则:
    长对齐、高对齐、宽相等
    33直观图:斜二测画法
    44斜二测画法的步骤:
    (1).平行于坐标轴的线依然平行于坐标轴;
    (2).平行于y轴的线长度变半,平行于x,z轴的线长度不变;
    (3).画法要写好。
    5用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图
    1.3空间几何体的表面积与体积
    (一)空间几何体的表面积
    1棱柱、棱锥的表面积:各个面面积之和
    2圆柱的表面积3圆锥的表面积
    4圆台的表面积
    5球的表面积
    (二)空间几何体的体积
    1柱体的体积
    2锥体的体积
    3台体的体积
    4球体的体积
    高二数学必修二知识点:直线与平面的位置关系
    2.1空间点、直线、平面之间的位置关系
    2.1.1
    1平面含义:平面是无限延展的
    2平面的画法及表示
    (1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)
    (2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC、平面ABCD等。
    3三个公理:
    (1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内
    符号表示为
    A∈L
    B∈L=>Lα
    A∈α
    B∈α
    公理1作用:判断直线是否在平面内
    (2)公理2:过不在一条直线上的三点,有且只有一个平面。
    符号表示为:A、B、C三点不共线=>有且只有一个平面α,
    使A∈α、B∈α、C∈α。
    公理2作用:确定一个平面的依据。
    (3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
    符号表示为:P∈α∩β=>α∩β=L,且P∈L
    公理3作用:判定两个平面是否相交的依据
    2.1.2空间中直线与直线之间的位置关系
    1空间的两条直线有如下三种关系:
    共面直线
    相交直线:同一平面内,有且只有一个公共点;
    平行直线:同一平面内,没有公共点;
    异面直线:不同在任何一个平面内,没有公共点。
    2公理4:平行于同一条直线的两条直线互相平行。
    符号表示为:设a、b、c是三条直线
    a∥b
    c∥b
    强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。
    公理4作用:判断空间两条直线平行的依据。
    3等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补
    4注意点:
    ①a'与b'所成的角的大小只由a、b的相互位置来确定,与O的选择无关,为了简便,点O一般取在两直线中的一条上;
    ②两条异面直线所成的角θ∈(0,);
    ③当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a⊥b;
    ④两条直线互相垂直,有共面垂直与异面垂直两种情形;
    ⑤计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。
    2.1.3—2.1.4空间中直线与平面、平面与平面之间的位置关系
    1、直线与平面有三种位置关系:
    (1)直线在平面内——有无数个公共点
    (2)直线与平面相交——有且只有一个公共点
    (3)直线在平面平行——没有公共点
    指出:直线与平面相交或平行的情况统称为直线在平面外,可用aα来表示
    aαa∩α=Aa∥α
    2.2.直线、平面平行的判定及其性质
    2.2.1直线与平面平行的判定
    1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
    简记为:线线平行,则线面平行。
    符号表示:
    aα
    bβ=>a∥α
    a∥b
    2.2.2平面与平面平行的判定
    1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。
    符号表示:
    aβ
    bβ
    a∩b=Pβ∥α
    a∥α
    b∥α
    2、判断两平面平行的方法有三种:
    (1)用定义;
    (2)判定定理;
    (3)垂直于同一条直线的两个平面平行。
    2.2.3—2.2.4直线与平面、平面与平面平行的性质
    1、定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
    简记为:线面平行则线线平行。
    符号表示:
    a∥α
    aβa∥b
    α∩β=b
    作用:利用该定理可解决直线间的平行问题。
    2、定理:如果两个平面同时与第三个平面相交,那么它们的交线平行。
    符号表示:
    α∥β
    α∩γ=aa∥b
    β∩γ=b
    作用:可以由平面与平面平行得出直线与直线平行
    2.3直线、平面垂直的判定及其性质
    2.3.1直线与平面垂直的判定
    1、定义
    如果直线L与平面α内的任意一条直线都垂直,我们就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面。直线与平面垂直时,它们公共点P叫做垂足。
    2、判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。
    注意点:a)定理中的“两条相交直线”这一条件不可忽视;
    b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想。
    2.3.2平面与平面垂直的判定
    1、二面角的概念:表示从空间一直线出发的两个半平面所组成的图形
    2、二面角的记法:二面角α-l-β或α-AB-β
    3、两个平面互相垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。
    2.3.3—2.3.4直线与平面、平面与平面垂直的性质
    1、定理:垂直于同一个平面的两条直线平行。
    2性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。
    高考数学重点概括
    一、事件
    1.在条件SS的必然事件.
    2.在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件.
    3.在条件SS的随机事件.
    二、概率和频率
    1.用概率度量随机事件发生的可能性大小能为我们决策提供关键性依据.
    2.在相同条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA
    nA为事件A出现的频数,称事件A出现的比例fn(A)=为事件A出现的频率.
    3.对于给定的随机事件A,由于事件A发生的频率fn(A)P(A),P(A).
    三、事件的关系与运算
    四、概率的几个基本性质
    1.概率的取值范围:
    2.必然事件的概率P(E)=
    3.不可能事件的概率P(F)=
    4.概率的加法公式:
    如果事件A与事件B互斥,则P(AB)=P(A)+P(B).
    5.对立事件的概率:
    若事件A与事件B互为对立事件,则AB为必然事件.P(AB)=1,P(A)=1-P(B).
    怎么学好数学
    1、要有学习数学的兴趣。“兴趣是最好的老师”。做任何事情,只要有兴趣,就会积极、主动去做,就会想方设法把它做好。但培养数学兴趣的关键是必须先掌握好数学基础知识和基本技能。有的同学老想做难题,看到别人上数奥班,自己也要去。如果这些同学连课内的基础知识都掌握不好,在里面学习只能滥竽充数,对学习并没有帮助,反而使自己失去学习数学的信心。我建议同学们可以看一些数学名人小故事、趣味数学等知识来增强学习的自信心。
    2、要有端正的学习态度。首先,要明确学习是为了自己,而不是为了老师和父母。因此,上课要专心、积极思考并勇于发言。其次,回家后要认真完成作业,及时地把当天学习的知识进行复习,再把明天要学的内容做一下预习,这样,学起来会轻松,理解得更加深刻些。
    3、要有“持之以恒”的精神。要使学习成绩提高,不能着急,要一步一步地进行,不要指望一夜之间什么都学会了。即使进步慢一点,只要坚持不懈,也一定能在数学的学习道路上获得成功!还要有“不耻下问”的精神,不要怕丢面子。其实无论知识难易,只要学会了,弄懂了,那才是最大的面子!