高二数学必修三第三单元的知识点梳理


    不管学什么科目,课后复习自然是少不了的,复习是对我们以往所学知识的一个巩固提高,特别是高中数学知识点比较复杂多样化,更需要我们抽出大量的时间进行预习、复习,下面是小编给大家带来的高二数学必修三第三单元的知识点梳理,希望大家能够喜欢!
    高二数学必修三第三单元的知识点梳理1
    有界性
    设函数f(x)在区间X上有定义,如果存在M>0,对于一切属于区间X上的x,恒有|f(x)|≤M,则称f(x)在区间X上有界,否则称f(x)在区间上无界。
    单调性
    设函数f(x)的定义域为D,区间I包含于D。如果对于区间上任意两点x1及x2,当x1f(x2),则称函数f(x)在区间I上是单调递减的。单调递增和单调递减的函数统称为单调函数。
    奇偶性
    设为一个实变量实值函数,若有f(-x)=-f(x),则f(x)为奇函数。
    几何上,一个奇函数关于原点对称,亦即其图像在绕原点做180度旋转后不会改变。
    奇函数的例子有x、sin(x)、sinh(x)和erf(x)。
    设f(x)为一实变量实值函数,若有f(x)=f(-x),则f(x)为偶函数。
    几何上,一个偶函数关于y轴对称,亦即其图在对y轴映射后不会改变。
    偶函数的例子有|x|、x2、cos(x)和cosh(x)。
    偶函数不可能是个双射映射。
    连续性
    在数学中,连续是函数的一种属性。直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)。
    高二数学必修三第三单元的知识点梳理2
    一、事件
    1.在条件SS的必然事件.
    2.在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件.
    3.在条件SS的随机事件.
    二、概率和频率
    1.用概率度量随机事件发生的可能性大小能为我们决策提供关键性依据.
    2.在相同条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA
    nA为事件A出现的频数,称事件A出现的比例fn(A)=为事件A出现的频率.
    3.对于给定的随机事件A,由于事件A发生的频率fn(A)P(A),P(A).
    三、事件的关系与运算
    四、概率的几个基本性质
    1.概率的取值范围:
    2.必然事件的概率P(E)=3.不可能事件的概率P(F)=
    4.概率的加法公式:
    如果事件A与事件B互斥,则P(AB)=P(A)+P(B).
    5.对立事件的概率:
    若事件A与事件B互为对立事件,则AB为必然事件.P(AB)=1,P(A)=1-P(B).
    高二数学必修三第三单元的知识点梳理3
    1、圆的定义
    平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
    2、圆的方程
    (1)标准方程,圆心,半径为r;
    (2)一般方程
    当时,方程表示圆,此时圆心为,半径为
    当时,表示一个点;当时,方程不表示任何图形。
    (3)求圆方程的方法:
    一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,
    需求出a,b,r;若利用一般方程,需要求出D,E,F;
    另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。
    3、直线与圆的位置关系
    直线与圆的位置关系有相离,相切,相交三种情况:
    (1)设直线,圆,圆心到l的距离为,则有
    (2)过圆外一点的切线:
    ①k不存在,验证是否成立
    ②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】
    (3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2
    4、圆与圆的位置关系
    通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。
    设圆
    两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。
    当时两圆外离,此时有公切线四条;
    当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;
    当时两圆相交,连心线垂直平分公共弦,有两条外公切线;
    当时,两圆内切,连心线经过切点,只有一条公切线;
    当时,两圆内含;当时,为同心圆。
    注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线
    圆的辅助线一般为连圆心与切线或者连圆心与弦中点