人教版初一数学知识点总结


    学习这件事不在乎有没有人教你,最重要的是在于你自己有没有觉悟和恒心。任何科目学习方法其实都是一样的,不断的记忆与练习,使知识刻在脑海里。下面是小编给大家整理的一些初一数学的知识点,希望对大家有所帮助。
    初一下册数学《三角形》知识点
    一、目标与要求
    1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形。
    2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系。
    3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题。
    4.三角形的内角和定理,能用平行线的性质推出这一定理。
    5.能应用三角形内角和定理解决一些简单的实际问题。
    二、重点
    三角形内角和定理;
    对三角形有关概念的了解,能用符号语言表示三条形。
    三、难点
    三角形内角和定理的推理的过程;
    在具体的图形中不重复,且不遗漏地识别所有三角形;
    用三角形三边不等关系判定三条线段可否组成三角形。
    四、知识框架
    五、知识点、概念总结
    1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
    2.三角形的分类
    3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
    4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
    5.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
    6.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
    7.高线、中线、角平分线的意义和做法
    8.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
    9.三角形内角和定理:三角形三个内角的和等于180°
    推论1直角三角形的两个锐角互余;
    推论2三角形的一个外角等于和它不相邻的两个内角和;
    推论3三角形的一个外角大于任何一个和它不相邻的内角;
    三角形的内角和是外角和的一半。
    10.三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。
    11.三角形外角的性质
    (1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;
    (2)三角形的一个外角等于与它不相邻的两个内角和;
    (3)三角形的一个外角大于与它不相邻的任一内角;
    (4)三角形的外角和是360°。
    12.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
    13.多边形的内角:多边形相邻两边组成的角叫做它的内角。
    14.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
    七年级数学知识点
    一次方程的应用:
    (一)、概念梳理
    ⑴列一元一次方程解决实际问题的一般步骤是:审题,特别注意关键的字和词的意义,弄清相关数量关系,注意单位统一,注意设未知数;
    ①解:设出未知数(注意单位),
    ②根据相等关系列出方程,
    ③解这个方程,
    ④答(包括单位名称,检验)。
    ⑵一些固定模型中的等量关系:
    ①数字问题:表示一个三位数,则有=100a+10b+c(数位上的数字×位数)
    ②行程问题:基本公式:路程=时间×速度
    甲乙同时相向行走相遇时:甲走的路程+乙走的路程=总路程
    甲走的时间=乙走的时间;
    甲乙同时同向行走追及时:甲走的路程-乙走的路程=甲乙之间距离
    ③工程问题(整体1):基本公式:工作量=工作时间×工作效率
    各部分工作量之和=总工作量;
    ④储蓄问题:本息和=本金+利息;利息=本金×利率×时间
    ⑤商品销售问题:商品利润=售价-进价(成本价)
    商品利润率=(售价-进价)/进价
    ⑥等积变形问题:面积或体积不变
    ⑦和、差、倍、分问题:多、少、几倍、几分之几
    ⑧按比例分配问题:一般设每份为x如:2:3:4为2x、3x、4x
    ⑨资源调配问题:资源、人员的调配(有时要间接设未知数)
    七年级上册数学复习资料
    有理数
    ★有理数的分类
    1.如果按定义分,有理数可以分为整数(正整数;负整数;0)和分数(正分数,负分数)。
    如果按正、负分,有理数可以分为正有理数(正整数;正分数)、0、负有理数(负整数;负分数)。
    2.所有的有理数都可以用分数表示,π不是有理数。
    数轴
    ★1.数轴的定义:规定了原点、正方向、单位长度的直线叫做数轴。
    相反数
    1.只有符号不同的两个数叫做互为相反数。(0的相反数是0)
    绝对值
    1.数轴上一点a到原点的距离表示a的绝对值。
    ★2.绝对值的性质:非负性。
    3.正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
    有理数的大小
    1.正数大于0,负数小于0,正数大于负数。
    2.两个负数,绝对值大的反而小。
    有理数的加法
    1.同号两数相加,取相同的符号,并把绝对值相加。
    2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0。一个数同0相加,仍得这个数。
    3.在有理数的加法中,
    加法交换率:两个数相加,交换加数的位置,和不变。
    加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
    有理数的减法
    减去一个数,等于加这个数的相反数。
    ★有理数的乘法
    两数相乘,同号得正,异号得负,并把绝对值相乘。任何数与0相乘后得0。
    倒数:乘积是1的两个数互为倒数。
    乘法交换律:乘法交换律两个数相乘,交换因数的位置,积不变。
    乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变。
    乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。