2021初一数学基本知识点


    天才就是勤奋曾经有人这样说过。如果这话不完全正确,那至少在很大程度上是正确的。学习,就算是天才,也是需要不断练习与记忆的。下面是小编给大家整理的一些初一数学的知识点,希望对大家有所帮助。
    初一下册数学《三角形》知识点
    一、目标与要求
    1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形。
    2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系。
    3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题。
    4.三角形的内角和定理,能用平行线的性质推出这一定理。
    5.能应用三角形内角和定理解决一些简单的实际问题。
    二、重点
    三角形内角和定理;
    对三角形有关概念的了解,能用符号语言表示三条形。
    三、难点
    三角形内角和定理的推理的过程;
    在具体的图形中不重复,且不遗漏地识别所有三角形;
    用三角形三边不等关系判定三条线段可否组成三角形。
    四、知识框架
    五、知识点、概念总结
    1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
    2.三角形的分类
    3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
    4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
    5.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
    6.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
    7.高线、中线、角平分线的意义和做法
    8.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
    9.三角形内角和定理:三角形三个内角的和等于180°
    推论1直角三角形的两个锐角互余;
    推论2三角形的一个外角等于和它不相邻的两个内角和;
    推论3三角形的一个外角大于任何一个和它不相邻的内角;
    三角形的内角和是外角和的一半。
    10.三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。
    11.三角形外角的性质
    (1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;
    (2)三角形的一个外角等于与它不相邻的两个内角和;
    (3)三角形的一个外角大于与它不相邻的任一内角;
    (4)三角形的外角和是360°。
    12.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
    13.多边形的内角:多边形相邻两边组成的角叫做它的内角。
    14.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
    15.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
    16.多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。
    17.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。
    18.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。
    初一下学期数学知识点
    相交线与平行线
    一、知识网络结构
    二、知识要点
    1、在同一平面内,两条直线的位置关系有两种:相交和平行,垂直是相交的一种特殊情况。
    2、在同一平面内,不相交的两条直线叫平行线。如果两条直线只有一个公共点,称这两条直线相交;如果两条直线没有公共点,称这两条直线平行。
    3、两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是
    邻补角。邻补角的性质:邻补角互补。如图1所示,与互为邻补角,
    与互为邻补角。+=180°;+=180°;+=180°;
    +=180°。
    4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的反向延长线,这样的两个角互为对顶角。对顶角的性质:对顶角相等。如图1所示,与互为对顶角。=;
    =。
    5、两条直线相交所成的角中,如果有一个是直角或90°时,称这两条直线互相垂直,
    其中一条叫做另一条的垂线。如图2所示,当=90°时,⊥。
    垂线的性质:
    性质1:过一点有且只有一条直线与已知直线垂直。
    性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
    性质3:如图2所示,当a⊥b时,====90°。
    点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。
    6、同位角、内错角、同旁内角基本特征:
    ①在两条直线(被截线)的同一方,都在第三条直线(截线)的同一侧,这样
    的两个角叫同位角。图3中,共有对同位角:与是同位角;
    与是同位角;与是同位角;与是同位角。
    ②在两条直线(被截线)之间,并且在第三条直线(截线)的两侧,这样的两个角叫内错角。图3中,共有对内错角:与是内错角;与是内错角。
    ③在两条直线(被截线)的之间,都在第三条直线(截线)的同一旁,这样的两个角叫同旁内角。图3中,共有对同旁内角:与是同旁内角;与是同旁内角。
    初一下册数学复习资料
    概念知识
    1、单项式:数字与字母的积,叫做单项式。
    2、多项式:几个单项式的和,叫做多项式。
    3、整式:单项式和多项式统称整式。
    4、单项式的次数:单项式中所有字母的指数的和叫单项式的次数。
    5、多项式的次数:多项式中次数的项的次数,就是这个多项式的次数。
    6、余角:两个角的和为90度,这两个角叫做互为余角。
    7、补角:两个角的和为180度,这两个角叫做互为补角。
    8、对顶角:两个角有一个公共顶点,其中一个角的两边是另一个角两边的反向延长线。这两个角就是对顶角。
    9、同位角:在“三线八角”中,位置相同的角,就是同位角。
    10、内错角:在“三线八角”中,夹在两直线内,位置错开的角,就是内错角。
    11、同旁内角:在“三线八角”中,夹在两直线内,在第三条直线同旁的角,就是同旁内角。
    12、有效数字:一个近似数,从左边第一个不为0的数开始,到精确的那位止,所有的数字都是有效数字。
    13、概率:一个事件发生的可能性的大小,就是这个事件发生的概率。
    14、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
    15、三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
    16、三角形的中线:在三角形中连接一个顶点与它的对边中点的线段,叫做这个三角形的中线。
    17、三角形的高线:从一个三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
    18、全等图形:两个能够重合的图形称为全等图形。
    19、变量:变化的数量,就叫变量。
    20、自变量:在变化的量中主动发生变化的,变叫自变量。
    21、因变量:随着自变量变化而被动发生变化的量,叫因变量。
    22、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形。
    23、对称轴:轴对称图形中对折的直线叫做对称轴。
    24、垂直平分线:线段是轴对称图形,它的一条对称轴垂直于这条线段并且平分它,这样的直线叫做这条线段的垂直平分线。(简称中垂线)