初一数学考试基础知识点


    学习从来无捷径,循序渐进登高峰。如果说学习一定有捷径,那只能是勤奋,因为努力永远不会骗人。学习需要勤奋,做任何事情都需要勤奋。下面是小编给大家整理的一些初一数学的知识点,希望对大家有所帮助。
    初一数学知识点
    【知识点一】实数的分类
    1、按定义分类:2.按性质符号分类:
    注:0既不是正数也不是负数.
    【知识点二】实数的相关概念
    1.相反数
    (1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.
    (2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.
    (3)互为相反数的两个数之和等于0.a、b互为相反数a+b=0.
    2.绝对值|a|≥0.
    3.倒数(1)0没有倒数(2)乘积是1的两个数互为倒数.a、b互为倒数.
    4.平方根
    (1)如果一个数的平方等于a,这个数就叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作.
    (2)一个正数a的正的平方根,叫做a的算术平方根.a(a≥0)的算术平方根记作.
    5.立方根
    如果x3=a,那么x叫做a的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.
    【知识点三】实数与数轴
    数轴定义:规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.
    【知识点四】实数大小的比较
    1.对于数轴上的任意两个点,靠右边的点所表示的数较大.
    2.正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.
    3.无理数的比较大小:
    初一数学知识点总结
    代数
    1.代数式:用运算符号“+-×÷……”连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式.
    2.列代数式的几个注意事项(数学规范):
    (1)数与字母相乘,或字母与字母相乘通常使用“·”乘,或省略不写;
    (2)数与数相乘,仍应使用“×”乘,不用“·”乘,也不能省略乘号;
    (3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;
    (4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a;
    (5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;
    (6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a.
    3.几个重要的代数式:(m、n表示整数)
    (1)a与b的平方差是:a2-b2;a与b差的平方是:(a-b)2;
    (2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c;
    (3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1;
    (4)若b>0,则正数是:a2+b,负数是:-a2-b,非负数是:a2,非正数是:-a2.
    有理数
    1.有理数:
    (1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;
    (2)有理数的分类:①②
    (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;
    (4)自然数?0和正整数;a>0?a是正数;a<0?a是负数;
    a≥0?a是正数或0?a是非负数;a≤0?a是负数或0?a是非正数.
    2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.
    3.相反数:
    (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
    (2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;
    (3)相反数的和为0?a+b=0?a、b互为相反数.
    七年级数学上册期末复习资料
    一次方程与方程组
    -----------3.1一元一次方程及其解法
    ①方程是含有未知数的等式。
    ②方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的整式方程叫做一元一次方程。
    ③注意判断一个方程是否是一元一次方程要抓住三点:
    1)未知数所在的式子是整式(方程是整式方程);
    2)化简后方程中只含有一个未知数;(系数中含字母时不能为零)
    3)经整理后方程中未知数的次数是1.
    ④解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。方程的解代入满足,方程成立。
    ⑤等式的性质:
    1)等式两边同时加上或减去同一个数或同一个式子(整式或分式),等式不变(结果仍相等)。a=b得:a+(-)c=b+(-)c
    2)等式两边同时乘以或除以同一个不为零的数,等式不变。
    a=b得:a×c=b×c或a÷c=b÷c(c≠0)
    注意:运用性质时,一定要注意等号两边都要同时+、-、×、÷;运用性质2时,一定要注意0这个数。
    ⑥解一元一次方程一般步骤:
    去分母(方程两边同乘各分母的最小公倍数)→去括号→移项→合并同类项→系数化1;
    以上是解一元一次方程五个基本步骤,在实际解方程的过程中,五个
    步骤不一定完全用上,或有些步骤还需要重复使用.因此,解方程时,
    要根据方程的特点,灵活选择方法.在解方程时还要注意以下几点:
    ⑴去分母:在方程两边都乘以各分母的最小公倍数,不要漏乘不含
    分母的项;分子是一个整体,去分母后应加上括号;
    注意:去分母(等式的基本性质)与分母化整(分数的基本性质)是两个概念,不能混淆;
    ⑵去括号:遵从先去小括号,再去中括号,最后去大括号不要漏乘括号的项;不要弄错符号(连着符号相乘);
    ⑶移项:把含有未知数的项移到方程的一边,其他项都移到方程的另一边(以=为界限),移项要变号;
    ⑷合并同类项:不要丢项,解方程是同解变形,每一步都是一个方程,
    不能像计算或化简题那样写能连等的形式.
    ⑸系数化1:(两边同除以未知数的系数)把方程化成ax=b(a≠0)
    的形式,字母及其指数不变系数化成1在方程两边都除以未知数的系数a,得到方程的解不要分子、分母搞颠倒(一步一步来)