苏教版初三数学重要知识点


    课堂临时报佛脚,不如课前预习好。其实任何学科都是一样的,学习任何一门学科,勤奋都是最好的学习方法,没有之一,书山有路勤为径。下面是小编给大家整理的一些初三数学的知识点,希望对大家有所帮助。
    初三新学期数学知识点
    一元一次方程:
    ①在一个方程中,只含有一个未知数,并且未知数的指数是
    1、这样的方程叫一元一次方程。
    ②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。
    解一元一次方程的步骤:
    去分母,移项,合并同类项,未知数系数化为1。
    二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。
    二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。
    解二元一次方程组的方法:代入消元法/加减消元法。
    2、不等式与不等式组
    不等式:
    ①用符号”=“号连接的式子叫不等式。
    ②不等式的两边都加上或减去同一个整式,不等号的方向不变。
    ③不等式的两边都乘以或者除以一个正数,不等号方向不变。
    ④不等式的两边都乘以或除以同一个负数,不等号方向相反。
    不等式的解集:
    ①能使不等式成立的未知数的值,叫做不等式的解。
    ②一个含有未知数的不等式的所有解,组成这个不等式的解集。
    ③求不等式解集的过程叫做解不等式。
    一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。
    一元一次不等式组:
    ①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。
    ②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
    ③求不等式组解集的过程,叫做解不等式组。
    3、函数
    变量:因变量,自变量。在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。
    一次函数:
    ①若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X的一次函数。
    ②当B=0时,称Y是X的正比例函数。
    一次函数的图象:
    ①把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。
    ②正比例函数Y=KX的图象是经过原点的一条直线。
    ③在一次函数中,当K〈0,B〈O,则经234象限;当K〈0,B〉0时,则经124象限;当K〉0,B〈0时,则经134象限;当K〉0,B〉0时,则经123象限。
    ④当K〉0时,Y的值随X值的增大而增大,当X〈0时,Y的值随X值的增大而减少。
    初三数学上册知识点归纳
    二元一次方程组
    1、定义:含有两个未知数,并且未知项的次数是1的整式方程叫做二元一次方程。
    2、二元一次方程组的解法
    (1)代入法
    由一个二次方程和一个一次方程所组成的方程组通常用代入法来解,这是基本的消元降次方法。
    (2)因式分解法
    在二元二次方程组中,至少有一个方程可以分解时,可采用因式分解法通过消元降次来解。
    (3)配方法
    将一个式子,或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和。
    (4)韦达定理法
    通过韦达定理的逆定理,可以利用两数的和积关系构造一元二次方程。
    (5)消常数项法
    当方程组的两个方程都缺一次项时,可用消去常数项的方法解。
    解一元二次方程
    解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。
    1、直接开平方法:
    用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±m.
    直接开平方法就是平方的逆运算.通常用根号表示其运算结果.
    2、配方法
    通过配成完全平方式的方法,得到一元二次方程的根的方法。这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式。
    (1)转化:将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)
    (2)系数化1:将二次项系数化为1
    (3)移项:将常数项移到等号右侧
    (4)配方:等号左右两边同时加上一次项系数一半的平方
    (5)变形:将等号左边的代数式写成完全平方形式
    (6)开方:左右同时开平方
    (7)求解:整理即可得到原方程的根
    初三数学复习资料
    有理数、整式的加减、一元一次方程、图形的初步认识。
    (1)有理数:是初中数学的基础内容,中考试题中分值约为3-6分,多以选择题,填空题,计算题的形式出现,难易度属于简单。
    【考察内容】复数以及混合运算(期中、期末必考计算)数轴、相反数、绝对值和倒数(选择、填空)。
    (2)整式的加减:中考试题中分值约为4分,题型以选择和填空题为主,难易度属于易。
    【考察内容】
    ①整式的概念和简单的运算,主要是同类项的概念和化简求值
    ②完全平方公式,平方差公式的几何意义
    ③利用提公因式法和公式法分解因式。
    (3)一元一次方程:是初一学习重点内容,主要学习内容有(归纳、总结、延伸)应用题思维、步骤、文字题,根据已知条件求未知。中考分值约为1-3分,题型主要以选择和填空题为主,极少出现简答题,难易度为易。
    【考察内容】
    ①方程及方程解的概念
    ②根据题意列一元一次方程
    ③解一元一次方程。题型:追击、相遇、时间速度路程的关系、打折销售、利润公式。
    (4)几何:角和线段,为下册学三角形打基础
    相交线和平行线、实数、平面直角坐标系、二元一次方程组、不等式和不等式组和数据库的收集整理与描述。
    (1)相交线和平行线:相交线和平行线是历年中考中常见的考点。通常以填空,选择题形式出现。分值为3-4分,难易度为易。
    【考察内容】
    ①平行线的性质(公理)
    ②平行线的判别方法
    ③构造平行线,利用平行线的性质解决问题。
    (2)平面直角坐标系:中考试题中分值约为3-4分,题型以选择,填空为主,难易度属于易。
    【考察内容】
    ①考察平面直角坐标系内点的坐标特征
    ②函数自变量的取值范围和球函数的值
    ③考察结合图像对简单实际问题中的函数关系进行分析。
    (3)二元一次方程组:中考分值约为3-6分,题型主要以选择,解答为主,难易度为中。
    【考察内容】
    ①方程组的解法,解方程组
    ②根据题意列二元一次方程组解经济问题。
    (4)不等式和不等式组:中考试题中分值约为3-8分,选择,填空,解答题为主。
    【考察内容:】
    ①一元一次不等式(组)的解法,不等式(组)解集的数轴表示,不等式(组)的整数解等,题型以选择,填空为主。
    ②列不等式(组)解决经济问题,调配问题等,主要以解答题为主。
    ③留意不等式(组)和函数图像的结合问题。
    (5)数据库的收集整理与描述
    分值一般在6-10分,题型近几年主要以解答题出现,偶尔以选择填空出现。难易度为中。