高考数学知识点归纳大全


    “十年寒窗苦,两天见分晓”说的就是现在的高考。高考作为人生道路上的一个重要转折点,无论是对学生本人,对于老师,还是对于学生家长,都是一门极为重要的艺术。下面是小编给大家带来的高考数学知识点归纳大全,以供大家参考!
    高考数学知识点归纳大全 
    (1)不等关系
    感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景。
    (2)一元二次不等式
    ①经历从实际情境中抽象出一元二次不等式模型的过程。
    ②通过函数图象了解一元二次不等式与相应函数、方程的联系。
    ③会解一元二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图。
    (3)二元一次不等式组与简单线性规划问题
    ①从实际情境中抽象出二元一次不等式组。
    ②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组(参见例2)。
    ③从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决(参见例3)。
    (4)基本不等式:
    ①探索并了解基本不等式的证明过程。
    ②会用基本不等式解决简单的(小)值问题。
    高考数学知识点归纳
    两个复数相等的定义:
    如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等,即:如果a,b,c,d∈R,那么a+bi=c+di
    a=c,b=d。特殊地,a,b∈R时,a+bi=0
    a=0,b=0.
    复数相等的充要条件,提供了将复数问题化归为实数问题解决的途径。
    复数相等特别提醒:
    一般地,两个复数只能说相等或不相等,而不能比较大小。如果两个复数都是实数,就可以比较大小,也只有当两个复数全是实数时才能比较大小。
    解复数相等问题的方法步骤:
    (1)把给的复数化成复数的标准形式;
    (2)根据复数相等的充要条件解之。
    高三数学知识点最新总结
    等式的性质:
    ①不等式的性质可分为不等式基本性质和不等式运算性质两部分。
    不等式基本性质有:
    (1)a>bb
    (2)a>b,b>ca>c(传递性)
    (3)a>ba+c>b+c(c∈R)
    (4)c>0时,a>bac>bc
    c<0时,a>bac
    运算性质有:
    (1)a>b,c>da+c>b+d。
    (2)a>b>0,c>d>0ac>bd。
    (3)a>b>0an>bn(n∈N,n>1)。
    (4)a>b>0>(n∈N,n>1)。
    应注意,上述性质中,条件与结论的逻辑关系有两种:“”和“”即推出关系和等价关系。一般地,证明不等式就是从条件出发施行一系列的推出变换。解不等式就是施行一系列的等价变换。因此,要正确理解和应用不等式性质。
    ②关于不等式的性质的考察,主要有以下三类问题:
    (1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立。
    (2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小。
    (3)利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系。
    高中数学集合复习知识点
    任一A,B,记做AB
    AB,BA ,A=B
    AB={|A|,且|B|}
    AB={|A|,或|B|}
    Card(AB)=card(A)+card(B)-card(AB)
    (1)命题
    原命题若p则q
    逆命题若q则p
    否命题若p则q
    逆否命题若q,则p
    (2)AB,A是B成立的充分条件
    BA,A是B成立的必要条件
    AB,A是B成立的充要条件
    1.集合元素具有①确定性;②互异性;③无序性
    2.集合表示方法①列举法;②描述法;③韦恩图;④数轴法
    (3)集合的运算
    ①A∩(B∪C)=(A∩B)∪(A∩C)
    ②Cu(A∩B)=CuA∪CuB
    Cu(A∪B)=CuA∩CuB
    (4)集合的性质
    n元集合的字集数:2n
    真子集数:2n-1;
    非空真子集数:2n-2
    高中数学集合知识点归纳
    1、集合的概念
    集合是数学中最原始的不定义的概念,只能给出,描述性说明:某些制定的且不同的对象集合在一起就称为一个集合。组成集合的对象叫元素,集合通常用大写字母A、B、C、…来表示。元素常用小写字母a、b、c、…来表示。
    集合是一个确定的整体,因此对集合也可以这样描述:具有某种属性的对象的全体组成的一个集合。
    2、元素与集合的关系元素与集合的关系有属于和不属于两种:
    元素a属于集合A,记做a∈A;元素a不属于集合A,记做a?A。
    3、集合中元素的特性
    (1)确定性:设A是一个给定的集合,_是某一具体对象,则_或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。例如A={0,1,3,4},可知0∈A,6?A。
    (2)互异性:“集合张的元素必须是互异的”,就是说“对于一个给定的集合,它的任何两个元素都是不同的”。
    (3)无序性:集合与其中元素的排列次序无关,如集合{a,b,c}与集合{c,b,a}是同一个集合。
    4、集合的分类
    集合科根据他含有的元素个数的多少分为两类:
    有限集:含有有限个元素的集合。如“方程3_+1=0”的解组成的集合”,由“2,4,6,8,组成的集合”,它们的元素个数是可数的,因此两个集合是有限集。
    无限集:含有无限个元素的集合,如“到平面上两个定点的距离相等于所有点”“所有的三角形”,组成上述集合的元素不可数的,因此他们是无限集。
    特别的,我们把不含有任何元素的集合叫做空集,记错F,如{|R|+1=0}。
    5、特定的集合的表示
    为了书写方便,我们规定常见的数集用特定的字母表示,下面是几种常见的数集表示方法,请牢记。
    (1)全体非负整数的集合通常简称非负整数集(或自然数集),记做N。
    (2)非负整数集内排出0的集合,也称正整数集,记做N_或N+。
    (3)全体整数的集合通常简称为整数集Z。
    (4)全体有理数的集合通常简称为有理数集,记做Q。
    (5)全体实数的集合通常简称为实数集,记做R。