关于凝聚态物理简介_如何提高物理成绩


    凝聚态物理一般指凝聚态物理学,凝聚态物理学是研究凝聚态物质的物理性质与微观结构以及它们之间的关系。这次小编给大家整理了凝聚态物理简介,供大家阅读参考。
    
    目录
    凝聚态物理资料
    快速提高物理成绩的5个方法
    如何提高物理成绩
    凝聚态物理资料
    一方面,凝聚态物学是固体物理学的向外延拓,使研究对象除固体物质以外,还包括许多液态物质,诸如液氦、熔盐、液态金属,以及液晶、乳胶与聚合物 等,甚至某些特殊的气态物质,如经玻色-爱因斯坦凝聚的玻色气体和量子简并的费米气体。另一方面,它也引入了新的概念体系,既有利于处理传统固体物理遗留的许多疑难问题,也便于推广应用到一些比常规固体更加复杂的物质。从历史来看,固体物理学创建于20世纪的30—40年代,而凝聚态物理学这一名称最早出现于70年代,到了80—90年代,它逐渐取代了固体物理学作为学科名称,或者将固体物理学理解为凝聚态物理学的同义词。
    凝聚态物理学是当今物理学最大也是最重要的分支学科之一。其研究层次,从宏观、介观到微观,进一步从微观层次统一认识各种凝聚态物理现象;物质维数从三维到低维和分数维;结构从周期到非周期和准周期,完整到不完整和近完整;外界环境从常规条件到极端条件和多种极端条件交叉作用,等等,形成了比固体物理学更深刻更普遍的理论体系。经过半个世纪多的发展,凝聚态物理学已成为物理学中最重要、最丰富和最活跃的学科,在诸如半导体、磁学、超导体等许多学科领域中的重大成就已在当代高新科学技术领域中起关键性作用,为发展新材料、新器件和新工艺提供了科学基础。前沿研究热点层出不穷,新兴交叉分支学科不断出现是凝聚态物理学的一个重要特点;与生产实践密切联系是它的另一重要特点,许多研究课题经常同时兼有基础研究和开发应用研究的性质,研究成果可望迅速转化为生产力。
    凝聚态物理学的基本任务在于阐明微观结构与物性的关系,因而判断构成凝聚态物质的某些类型微观粒子的集体是否呈现量子特征(波粒二象性)是至关紧要的。电子质量小,常温下明显地呈现量子特征;离子或原子则由于质量较重,只有低温下(约4K)的液氦或极低温下(μK至nK)的碱金属稀薄气体,原子的量子特征才突出地表现出来。这也说明为何低温条件对凝聚态物理学的研究十分重要。微观粒子分为两类:一类是费米子,具有半整数的自旋,服从泡利不相容原理;另一类是玻色子,具有整数的自旋,同一能态容许任意数的粒子占据。这两类粒子的物理行为判然有别。  
    固体电子论
    对固体中电子行为的研究一直是固体物理学的核心问题。凝聚态物理学中情况依然如此。固体中电子的行为可按电子间相互作用的大小,分为三个区域。  
    ①弱关联区。基于电子受晶格上离子散射的能带理论,为固体中电子行为提供了合适的理论框架,应用于半导体和简单金属已取得非凡的成功,也构成半导体物理学的理论基础。  
    ②中等关联区。包括一般金属和强磁性物质。朗道的费米液体理论成功地描述了一般金属以及低温下3He液体中的元激发及物理行为。W.科恩等发展的密度泛函理论则提供了高效计算复杂结构材料中电子结构的理论框架。电子之间的交换相互作用(包括直接、间接、超交换、双交换及巡游交换)导致了磁有序相(铁磁体、反铁磁体及更铁磁体)的形成。有关磁有序相的激发态(磁振子与磁畴)又提供了理解其物理参数和磁化曲线的契机,构成了铁磁学的物理基础。  
    ③强关联区。涉及电子浓度甚低的不良金属。能带理论建立不久,E.维格纳就设想库仑斥力使电子定域于维格纳晶格上,接着N.莫脱认为NiO这类氧化物是因关联导致的绝缘体,即莫脱绝缘体。20世纪60年代近藤对于稀磁合金中电阻极小现象作了理论解释,称为近藤效应。80—90年代在一系列掺杂莫脱绝缘体中发现了奇异的物性,如铜氧化物中发现高温超导体、锰氧化物中发现巨磁电阻效应等。另外,还在与近藤效应有关的镧系和锕系重电子合金中发现了多种有序相和反常的物性。对上述各类的强关联物质中的物性问题研究,尚未得到圆满解决。  
    宏观量子态
    低温物理学研究的重大成果在于发现了金属与合金中的超导现象(电阻在Tc以下突降为零,磁通全部被斥,成为完全抗磁体)和液氦中的超流现象(黏滞系数在Tc以下突降为零)。这些宏观量子态现象的出现是规范对称性(波函数相位可为任意值)破缺的后果。早在1924年爱因斯坦就根据玻色-爱因斯坦统计提出了玻色-爱因斯坦凝聚的设想,即理想的玻色气体在低温下会出现基态为宏观的粒子数所占。4He原子是玻色子,因而在4He超流发现之后,F.伦敦就提出超流态是玻色–爱因斯坦凝聚的结果。而伦敦所提出的描述超导电动力学的伦敦方程实际上就蕴含了宏观量子态的概念。1952年V.京茨堡与L.朗道提出的唯象超导理论就明确地引入了类似于宏观波函数的复序参量来描述超导态。1957年J.巴丁等提出了正确的超导微观理论,即BCS理论,其关键在于一对电子在动量空间由于电子–声子相互作用而形成库珀对,从而使电子系统也具有某些类似于玻色子系统的特征。1972年在2.7mK以下发现了3He超流态,3He原子也是费米子,所以这也是费米子配对的结果。从序参量的对称性可以判断配对态的特性:常规超导体是s波配对的自旋单态,高温超导体是d波配对的自旋单态,3He超流体是p波配对的自旋三态,具有磁性。还有一些疑似p波配对的非常规超导体,正在研究之中。非常规超导体的机制也尚待澄清。1995年E.科纳尔等在将稀薄87Rb气体冷却到极低温(<μK)实现了玻色–爱因斯坦凝聚,这就将凝聚态物理学的研究领域扩充到极低温下的稀薄气体。  
    纳米结构与介观物理
    由于对于一些简单材料的物性已经比较清楚,从20世纪中叶开始就致力于将不同的材料按特定的结构尺度(关联于物性的某一特征长度)来组织成材料与器件的复合体,从而获得优异的物理性能。如果所选的结构尺度在纳米范围(1—100纳米)之内,即为纳米结构。20世纪末这一领域引起学术界和社会上的广泛重视。  
    量子力学认为粒子可穿过纳米尺度的势垒而呈现隧道效应。利用这一效应可制备隧道结这类夹层结构,诸如半导体隧道二极管、单电子超导隧道结、库珀对超导隧道结。后者体现了约瑟夫森效应已成为超导电子学的核心器件。利用与自旋相关的隧道效应,则已制出具有隧道磁电阻的磁存储器。  
    复合结构若进入电子费米波长的范围,就呈现量子限制效应,导致了量子阱、量子线与量子点。半导体量子阱已用来制备快速晶体管和高效激光器。量子线的研究也卓有成效,纳米碳管所揭示的丰富多彩的物性就是明证。量子点则可用以制备微腔激光器和单电子晶体管。利用铁磁金属与非磁金属可制成磁量子阱,呈现巨磁电阻效应,可用作存储器的读出磁头。这些事例说明了纳米电子学(包括自旋电子学)将成为固体电子学和光子学的发展主流。  
    纳米结构在基础研究中也发挥了十分重要的作用:在两维电子气中发现了整数和分数量子霍耳效应以及维格纳晶格,在一维导体中验证了卢廷格液体的理论,在一些人工纳米结构中发现了介观量子输运现象。  
    软物质物理学
    软物质又称为复杂液体,是介于固体与液体之间的物相,液晶、乳胶、聚合物等均属此类。软物质大都是有机物质,虽然在原子尺度上是无序的,但在介观尺度上则可能出现某种规则而有序的结构。如液晶分子是杆状的,尽管其质心不具有位置序,但杆的取向却可能是有序的。又如聚合物是由柔软的长链分子所构成,由于长程无序的关联性,因而遵循了类似于临界现象的标度律。20世纪70—80年代液晶物理学和聚合物物理学的建立,使凝聚态物理学从传统的硬物质成功地延拓到软物质。软物质在微小的外界刺激(温度、外场或外力)下有显著的响应是其物性的特征,从而产生明显的实用效果。一颗纽扣电池可驱动液晶手表数年之久,就是证明。软物质变化过程中内能变化甚微,熵的变化十分显著,因而其组织结构的变化主要由熵来驱动,和内能驱动的硬物质迥然有别。熵致有序和熵致形变乃是软物质自组装的物理基础。  
    有机物质(小分子和聚合物)的电子结构与电子性质也受到广泛的重视。有机发光器件和电子器件正在研制开发之中。
    <<<返回目录
    快速提高物理成绩的5个方法
    1、想学好物理一定要养成提前预习的习惯,每次在上课之前一定要认认真真的预习,这样才可以知道哪里是自己不懂的知识点,等到课堂中老师上课的时候重点听这一部分。
    2、课堂中一定要聚精会神的听课,可能你的稍微不留神就会错过一个重要的知识点,物理知识点是一个套着一个的,所以每个知识点都要认真听讲。
    3、课后的复习是很重要的,在课堂上听懂是一回事,如果不及时复习会很快遗忘,最好把老师上课教的例题自己给做一遍,这样才是掌握了上课老师所教的知识点。
    4、大量的习题是快速提高物理的一个必要的途径,可以买一两本有用的习题讲解,平时多做这些题,如果有不懂的可以参考讲解,然后自己再做一便。大量的做题会使我们碰到各种各样的知识点,认真掌握他们吧。
    5、要养成记录错题的习惯,这是学好每门课都必须要做的,物理也不例外。错题肯定是我们没有学好的地方,常把错题拿出来看看,在错题中多总结思考,这有助于我们快速提高物理成绩。
    <<<返回目录
    如何提高物理成绩
    物理想要学好,首先是把教材上的知识仔细的看一下,一定要掌握公式是怎么推导出来的,能够学会自己推导物理公式,主公式就是你所学的内容的本质,一定要抓住,进而将公式变形,或者与其他公式联立得到别的公式或者推论,将他们了解步骤即可,关键是知道怎么推导,有什么用处。
    在这之后就是做例题,例题都是最简单易懂的题目,通过例题初步掌握公式的使用方法,然后就开始刷题,多做题可以提高对公式的理解程度,也能提高自己对公式使用的熟练度。然后就是处理错题,把自己做错的题多看几遍,加深印象。最后就是总结做题思路,解题思想,也就是一类题目的套路。物理的学习比较有灵活性,但是都离不开对公式的推导和大量的做题。
    <<<返回目录