青岛版高一数学知识点


    失败乃成功之母,重复是学习之母。学习,需要不断的重复重复,重复学过的知识,加深印象,其实任何科目的学习方法都是不断重复学习。下面是小编给大家整理的一些高一数学的知识点,希望对大家有所帮助。
    高一数学必修二重要知识点
    1、棱柱
    定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
    分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
    表示:用各顶点字母,如五棱柱或用对角线的.端点字母,如五棱柱ABCDE?A'B'C'D'E'几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
    2、棱锥
    定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体
    分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等
    表示:用各顶点字母,如五棱锥P?ABCDE
    几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相
    似,其相似比等于顶点到截面距离与高的比的平方。
    3、棱台
    定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分
    分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等
    表示:用各顶点字母,如四棱台ABCD—A'B'C'D'
    几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点
    4、圆柱
    定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体
    几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
    5、圆锥
    定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体
    几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
    6、圆台
    定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分
    几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
    高一数学必修一第一章知识点
    一、集合有关概念
    1.集合的含义
    2.集合的中元素的三个特性:
    (1)元素的确定性如:世界上的山
    (2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}
    (3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合
    3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
    (1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
    (2)集合的表示方法:列举法与描述法。
    注意:常用数集及其记法:
    非负整数集(即自然数集)记作:N
    正整数集:N.或N+
    整数集:Z
    有理数集:Q
    实数集:R
    1)列举法:{a,b,c……}
    2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{x?R|x-3>2},{x|x-3>2}
    3)语言描述法:例:{不是直角三角形的三角形}
    4)Venn图:
    4、集合的分类:
    (1)有限集含有有限个元素的集合
    (2)无限集含有无限个元素的集合
    (3)空集不含任何元素的集合例:{x|x2=-5}
    二、集合间的基本关系
    1.“包含”关系—子集
    注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
    反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA
    2.“相等”关系:A=B(5≥5,且5≤5,则5=5)
    实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”
    即:①任何一个集合是它本身的子集。AíA
    ②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)
    ③如果AíB,BíC,那么AíC
    ④如果AíB同时BíA那么A=B
    3.不含任何元素的集合叫做空集,记为Φ
    规定:空集是任何集合的子集,空集是任何非空集合的真子集。
    高一数学复习方法推荐
    1.用心感受数学,欣赏数学,掌握数学思想。有位数学家曾说过:数学是用最小的空间集中了的理想。
    2.要重视数学概念的理解。高一数学与初中数学的区别是概念多并且较抽象,学起来“味道”同以往很不一样,解题方法通常就来自概念本身。学习概念时,仅仅知道概念在字面上的含义是不够的,还须理解其隐含着的深层次的含义并掌握各种等价的表达方式。例如,为什么函数y=f(x)与y=f-1(x)的图象关于直线y=x对称,而y=f(x)与x=f-1(y)却有相同的图象;又如,为什么当f(x-1)=f(1-x)时,函数y=f(x)的图象关于y轴对称,而y=f(x-1)与y=f(1-x)的图象却关于直线x=1对称,不透彻理解一个图象的对称性与两个图象的对称关系的区别,两者很容易混淆。
    3.对数学学习应抱着二个词——“严谨,创新”,所谓严谨,就是在平时训练的时候,不能一丝马虎,是对就是对,错了就一定要承认,要找原因,要改正,万不可以抱着“好像是对的”的心态,蒙混过关。至于创新呢,要求就高一点了,要求在你会解决此问题的情况下,你还会不会用另一种更简单,更有效的方法,这就需要扎实的基本功。平时,我们看到一些人,做题时从不用常规方法,总爱自己创造一些方法以“偏方”解题,虽然有时候也能让他撞上一些好的方法,但我认为是不可取的。因为你首先必须学会用常规的方法,在此基础上你才能创新,你的创新才有意义,而那些总是片面“追求”新方法的人,他们的思维有如空中楼阁,必然是昙花一现。当然我们要有创新意识,但是,创新是有条件的,必须有扎实的基础,因此我想劝一下那些基础不牢,而平时总爱用“偏方”的同学们,该是清醒一下的时候了,千万不要继续钻那可怜的牛角尖啊!
    4.建立良好的学习数学习惯,习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力。
    5.多听、多作、多想、多问:此“四多”乃培养数学能力的要诀,“听”就是在“学”,作是“练习”(作课本上的习题或其它问题),也就是把您所学的,应用到解决问题上。“听”与“作”难免会碰到疑难,那就要靠“想”的功夫去打通它,假如还想不通,解不来就要“问”——问同学、问老师或参考书,务必将疑难解决为止。这就是所谓的学问:既学又问。
    6.要有毅力、要有恒心:基本上要有一个认识:数学能力乃是长期努力累积的结果,而不是一朝一夕之功所能达到的。您可能花一天或一个晚上的功夫把某课文背得滚瓜烂熟,第二天考背诵时对答如流而获高分,也有可能花了一两个礼拜的时间拼命学数学,但到头来数学可能还考不好,这时候您可不能气馁,也不必为花掉的时间惋惜,因为种什么“因”必能得什么“果”,只要继续努力,持之有恒,最后必能证明您的努力没有白费!