高二数学知识大考重要点


    如果高二阶段老师在的时候你就认真学习,不在的时候就随随便便,甚至消极怠工,似乎是为老师学习,这种意识下的学习效率是可想而知的。以下是小编给大家整理的高二数学知识大考重要点,希望能助你一臂之力!
    高二数学知识大考重要点1
    1、圆的定义
    平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
    2、圆的方程
    (1)标准方程,圆心,半径为r;
    (2)一般方程
    当时,方程表示圆,此时圆心为,半径为
    当时,表示一个点;当时,方程不表示任何图形。
    (3)求圆方程的方法:
    一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,
    需求出a,b,r;若利用一般方程,需要求出D,E,F;
    另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。
    3、直线与圆的位置关系
    直线与圆的位置关系有相离,相切,相交三种情况:
    (1)设直线,圆,圆心到l的距离为,则有
    (2)过圆外一点的切线:
    ①k不存在,验证是否成立
    ②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】
    (3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2
    4、圆与圆的位置关系
    通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。
    设圆
    两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。
    当时两圆外离,此时有公切线四条;
    当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;
    当时两圆相交,连心线垂直平分公共弦,有两条外公切线;
    当时,两圆内切,连心线经过切点,只有一条公切线;
    当时,两圆内含;当时,为同心圆。
    注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线
    圆的辅助线一般为连圆心与切线或者连圆心与弦中点
    高二数学知识大考重要点2
    极值的定义:
    (1)极大值:一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)
    (2)极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f(x)>f(x0),就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点。
    极值的性质:
    (1)极值是一个局部概念,由定义知道,极值只是某个点的函数值与它附近点的函数值比较是或最小,并不意味着它在函数的整个的定义域内或最小;
    (2)函数的极值不是的,即一个函数在某区间上或定义域内极大值或极小值可以不止一个;
    (3)极大值与极小值之间无确定的大小关系,即一个函数的极大值未必大于极小值;
    (4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点,而使函数取得值、最小值的点可能在区间的内部,也可能在区间的端点。
    求函数f(x)的极值的步骤:
    (1)确定函数的定义区间,求导数f′(x);
    (2)求方程f′(x)=0的根;
    (3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号即都为正或都为负,则f(x)在这个根处无极值。
    高二数学知识大考重要点3
    一、事件
    1.在条件SS的必然事件.
    2.在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件.
    3.在条件SS的随机事件.
    二、概率和频率
    1.用概率度量随机事件发生的可能性大小能为我们决策提供关键性依据.
    2.在相同条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA
    nA为事件A出现的频数,称事件A出现的比例fn(A)=为事件A出现的频率.
    3.对于给定的随机事件A,由于事件A发生的频率fn(A)P(A),P(A).
    三、事件的关系与运算
    四、概率的几个基本性质
    1.概率的取值范围:
    2.必然事件的概率P(E)=3.不可能事件的概率P(F)=
    4.概率的加法公式:
    如果事件A与事件B互斥,则P(AB)=P(A)+P(B).
    5.对立事件的概率:
    若事件A与事件B互为对立事件,则AB为必然事件.P(AB)=1,P(A)=1-P(B).