高二年级人教版数学必考知识点


    在学习新知识的同时还要复习以前的旧知识,肯定会累,所以要注意劳逸结合。只有充沛的精力才能迎接新的挑战,才会有事半功倍的学习。以下是小编给大家整理的高二年级人教版数学必考知识点,希望大家能够喜欢!
    高二年级人教版数学必考知识点1
    一、随机事件
    主要掌握好(三四五)
    (1)事件的三种运算:并(和)、交(积)、差;注意差A-B可以表示成A与B的逆的积。
    (2)四种运算律:交换律、结合律、分配律、德莫根律。
    (3)事件的五种关系:包含、相等、互斥(互不相容)、对立、相互独立。
    二、概率定义
    (1)统计定义:频率稳定在一个数附近,这个数称为事件的概率;(2)古典定义:要求样本空间只有有限个基本事件,每个基本事件出现的可能性相等,则事件A所含基本事件个数与样本空间所含基本事件个数的比称为事件的古典概率;
    (3)几何概率:样本空间中的元素有无穷多个,每个元素出现的可能性相等,则可以将样本空间看成一个几何图形,事件A看成这个图形的子集,它的概率通过子集图形的大小与样本空间图形的大小的比来计算;
    (4)公理化定义:满足三条公理的任何从样本空间的子集集合到[0,1]的映射。
    三、概率性质与公式
    (1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特别地,如果A与B互不相容,则P(A+B)=P(A)+P(B);
    (2)差:P(A-B)=P(A)-P(AB),特别地,如果B包含于A,则P(A-B)=P(A)-P(B);
    (3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B相互独立,则P(AB)=P(A)P(B);
    (4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,
    贝叶斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;
    如果一个事件B可以在多种情形(原因)A1,A2,....,An下发生,则用全概率公式求B发生的概率;如果事件B已经发生,要求它是由Aj引起的概率,则用贝叶斯公式.
    (5)二项概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.当一个问题可以看成n重贝努力试验(三个条件:n次重复,每次只有A与A的逆可能发生,各次试验结果相互独立)时,要考虑二项概率公式.
    高二年级人教版数学必考知识点2
    (1)定义:
    对于函数y=f(x)(x∈D),把使f(x)=0成立的实数x叫做函数y=f(x)(x∈D)的零点。
    (2)函数的零点与相应方程的根、函数的图象与x轴交点间的关系:
    方程f(x)=0有实数根?函数y=f(x)的图象与x轴有交点?函数y=f(x)有零点。
    (3)函数零点的判定(零点存在性定理):
    如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根。
    二二次函数y=ax2+bx+c(a>0)的图象与零点的关系
    三二分法
    对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法。
    1、函数的零点不是点:
    函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x轴交点的横坐标,所以函数的零点是一个数,而不是一个点.在写函数零点时,所写的一定是一个数字,而不是一个坐标。
    2、对函数零点存在的判断中,必须强调:
    (1)、f(x)在[a,b]上连续;
    (2)、f(a)·f(b)<0;
    (3)、在(a,b)内存在零点。
    这是零点存在的一个充分条件,但不必要。
    3、对于定义域内连续不断的函数,其相邻两个零点之间的所有函数值保持同号。
    利用函数零点的存在性定理判断零点所在的区间时,首先看函数y=f(x)在区间[a,b]上的图象是否连续不断,再看是否有f(a)·f(b)<0.若有,则函数y=f(x)在区间(a,b)内必有零点。
    四判断函数零点个数的常用方法
    1、解方程法:
    令f(x)=0,如果能求出解,则有几个解就有几个零点。
    2、零点存在性定理法:
    利用定理不仅要判断函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点。
    3、数形结合法:
    转化为两个函数的图象的交点个数问题.先画出两个函数的图象,看其交点的个数,其中交点的个数,就是函数零点的个数。
    已知函数有零点(方程有根)求参数取值常用的方法
    1、直接法:
    直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围。
    2、分离参数法:
    先将参数分离,转化成求函数值域问题加以解决。
    3、数形结合法:
    先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解。
    高二年级人教版数学必考知识点3
    1.解不等式问题的分类
    (1)解一元一次不等式.
    (2)解一元二次不等式.
    (3)可以化为一元一次或一元二次不等式的不等式.
    ①解一元高次不等式;
    ②解分式不等式;
    ③解无理不等式;
    ④解指数不等式;
    ⑤解对数不等式;
    ⑥解带绝对值的不等式;
    ⑦解不等式组.
    2.解不等式时应特别注意下列几点:
    (1)正确应用不等式的基本性质.
    (2)正确应用幂函数、指数函数和对数函数的增、减性.
    (3)注意代数式中未知数的取值范围.
    3.不等式的同解性
    (5)|f(x)|
    (6)|f(x)|>g(x)①与f(x)>g(x)或f(x)<-g(x)(其中g(x)≥0)同解;②与g(x)<0同解.
    (9)当a>1时,af(x)>ag(x)与f(x)>g(x)同解,当0ag(x)与f(x)