高二数学必修一到五知识点总结


    高二时期的学习目标主要体现在班级或年级里你应该达到或者超过什么水平,以及你在高中毕业时将要达到什么水平,学到什么知识和技能,考上什么类型的大学等。以下是小编给大家整理的高二数学必修一到五知识点总结,希望大家能够喜欢!
    高二数学必修一到五知识点总结1
    1、圆的定义:
    平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
    2、圆的方程
    (1)标准方程,圆心,半径为r;
    (2)一般方程
    当时,方程表示圆,此时圆心为,半径为
    当时,表示一个点;当时,方程不表示任何图形。
    (3)求圆方程的方法:
    一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,
    需求出a,b,r;若利用一般方程,需要求出D,E,F;
    另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。
    3、直线与圆的位置关系:
    直线与圆的位置关系有相离,相切,相交三种情况:
    (1)设直线,圆,圆心到l的距离为,则有
    (2)过圆外一点的切线:
    ①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程
    (3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2
    4、圆与圆的位置关系:
    通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。
    设圆,
    两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。
    当时两圆外离,此时有公切线四条;
    当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;
    当时两圆相交,连心线垂直平分公共弦,有两条外公切线;
    当时,两圆内切,连心线经过切点,只有一条公切线;
    当时,两圆内含;当时,为同心圆。
    注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线
    圆的辅助线一般为连圆心与切线或者连圆心与弦中点
    高二数学必修一到五知识点总结2
    数列定义:
    如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。
    等差数列的通项公式为:an=a1+(n-1)d(1)
    前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)
    以上n均属于正整数。
    解释说明:
    从(1)式可以看出,an是n的一次函数(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。
    在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项,且为数列的平均数。
    且任意两项am,an的关系为:an=am+(n-m)d
    它可以看作等差数列广义的通项公式。
    推论公式:
    从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}
    若m,n,p,q∈N_,且m+n=p+q,则有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。
    基本公式:
    和=(首项+末项)×项数÷2
    项数=(末项-首项)÷公差+1
    首项=2和÷项数-末项
    末项=2和÷项数-首项
    末项=首项+(项数-1)×公差
    高二数学必修一到五知识点总结3
    1.辗转相除法是用于求公约数的一种方法,这种算法由欧几里得在公元前年左右首先提出,因而又叫欧几里得算法.
    2.所谓辗转相法,就是对于给定的两个数,用较大的数除以较小的数.若余数不为零,则将较小的数和余数构成新的一对数,继续上面的除法,直到大数被小数除尽,则这时的除数就是原来两个数的公约数.
    3.更相减损术是一种求两数公约数的方法.其基本过程是:对于给定的两数,用较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数,继续这个操作,直到所得的数相等为止,则这个数就是所求的公约数.
    4.秦九韶算法是一种用于计算一元二次多项式的值的方法.
    5.常用的排序方法是直接插入排序和冒泡排序.
    6.进位制是人们为了计数和运算方便而约定的记数系统.“满进一”,就是k进制,进制的基数是k.
    7.将进制的数化为十进制数的方法是:先将进制数写成用各位上的数字与k的幂的乘积之和的形式,再按照十进制数的运算规则计算出结果.
    8.将十进制数化为进制数的方法是:除k取余法.即用k连续去除该十进制数或所得的商,直到商为零为止,然后把每次所得的余数倒着排成一个数就是相应的进制数.