初一数学期中考试知识点


    天才就是勤奋曾经有人这样说过。如果这话不完全正确,那至少在很大程度上是正确的。学习,就算是天才,也是需要不断练习与记忆的。下面是小编给大家整理的一些初一数学的知识点,希望对大家有所帮助。
    七年级数学知识点
    变量之间的关系
    一理论理解
    1、若Y随X的变化而变化,则X是自变量Y是因变量。
    自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量,数值保持不变的量叫做常量。
    3、若等腰三角形顶角是y,底角是x,那么y与x的关系式为y=180-2x.
    2、能确定变量之间的关系式:相关公式①路程=速度×时间②长方形周长=2×(长+宽)③梯形面积=(上底+下底)×高÷2④本息和=本金+利率×本金×时间。⑤总价=单价×总量。⑥平均速度=总路程÷总时间
    二、列表法:采用数表相结合的形式,运用表格可以表示两个变量之间的关系。列表时要选取能代表自变量的一些数据,并按从小到大的顺序列出,再分别求出因变量的对应值。列表法的特点是直观,可以直接从表中找出自变量与因变量的对应值,但缺点是具有局限性,只能表示因变量的一部分。
    三.关系式法:关系式是利用数学式子来表示变量之间关系的等式,利用关系式,可以根据任何一个自变量的值求出相应的因变量的值,也可以已知因变量的值求出相应的自变量的值。
    四、图像注意:a.认真理解图象的含义,注意选择一个能反映题意的图象;b.从横轴和纵轴的实际意义理解图象上特殊点的含义(坐标),特别是图像的起点、拐点、交点
    八、事物变化趋势的描述:对事物变化趋势的描述一般有两种:
    1.随着自变量x的逐渐增加(大),因变量y逐渐增加(大)(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而增加(大));
    2.随着自变量x的逐渐增加(大),因变量y逐渐减小(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而减小).
    注意:如果在整个过程中事物的变化趋势不一样,可以采用分段描述.例如在什么范围内随着自变量x的逐渐增加(大),因变量y逐渐增加(大)等等.
    九、估计(或者估算)对事物的估计(或者估算)有三种:
    1.利用事物的变化规律进行估计(或者估算).例如:自变量x每增加一定量,因变量y的变化情况;平均每次(年)的变化情况(平均每次的变化量=(尾数-首数)/次数或相差年数)等等;
    2.利用图象:首先根据若干个对应组值,作出相应的图象,再在图象上找到对应的点对应的因变量y的值;
    3.利用关系式:首先求出关系式,然后直接代入求值即可.
    初一下学期数学知识点
    相交线与平行线
    一、知识网络结构
    二、知识要点
    1、在同一平面内,两条直线的位置关系有两种:相交和平行,垂直是相交的一种特殊情况。
    2、在同一平面内,不相交的两条直线叫平行线。如果两条直线只有一个公共点,称这两条直线相交;如果两条直线没有公共点,称这两条直线平行。
    3、两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是
    邻补角。邻补角的性质:邻补角互补。如图1所示,与互为邻补角,
    与互为邻补角。+=180°;+=180°;+=180°;
    +=180°。
    4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的反向延长线,这样的两个角互为对顶角。对顶角的性质:对顶角相等。如图1所示,与互为对顶角。=;
    =。
    5、两条直线相交所成的角中,如果有一个是直角或90°时,称这两条直线互相垂直,
    其中一条叫做另一条的垂线。如图2所示,当=90°时,⊥。
    垂线的性质:
    性质1:过一点有且只有一条直线与已知直线垂直。
    性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
    性质3:如图2所示,当a⊥b时,====90°。
    点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。
    6、同位角、内错角、同旁内角基本特征:
    ①在两条直线(被截线)的同一方,都在第三条直线(截线)的同一侧,这样
    的两个角叫同位角。图3中,共有对同位角:与是同位角;
    与是同位角;与是同位角;与是同位角。
    ②在两条直线(被截线)之间,并且在第三条直线(截线)的两侧,这样的两个角叫内错角。图3中,共有对内错角:与是内错角;与是内错角。
    ③在两条直线(被截线)的之间,都在第三条直线(截线)的同一旁,这样的两个角叫同旁内角。图3中,共有对同旁内角:与是同旁内角;与是同旁内角。
    初一数学方法技巧
    1.请概括的说一下学习的方法
    曰:“像做其他事一样,学习数学要研究方法。我为你们推荐的方法是:超前学习,展开联想,多做总结,找出合情合理。
    2.请谈谈超前学习的好处
    曰:“首先,超前学习能挖掘出自身的潜力,培养自学能力。经过超前学习,会发现自己能独立解决许多问题,对提高自信心,培养学习兴趣很有帮助。”
    其次,够消除对新知识的“隐患”。超前学习能够发现在现有的基础上,自己对新知识认识的不妥之处。相反地,若直接听别人说。似乎自己也能一开始就达到这种理解水平,实践证明,并非这样。
    再次,超前学习中的有些内容,当时不能透彻理解,但经过深思之后,即使搁置一边,大脑也会潜意识“加工”。当教师进度进行到这块内容时,我们做第二次理解,会深刻的多。
    最后,超前学习能提高听课质量。超前学习以后,我们发现新知识中的多数自己完全可以理解。只有少数地方需借助于别人。这样,在课堂上,我们即能将可以集中注意力的时间放“这少数地方”的理解上,即“好钢用在刀刃上”。事实上,一节课,能集中注意力的时间并不太多。
    3.请谈谈联想与总结
    曰:联想与总结贯穿与学习过程中的始终。对每一知识的认识,必定要有认识基础。寻找认识基础的过程即是联想,而认识基础的是对以前知识的总结。以前总结的越简洁、清晰、合理,越容易联想。这样就可以把新知识熔进原来的知识结构中为以后的某次联想奠定基础。联想与总结在解题中特别有效。也许你以前并没有这样的认识,但解题能力却很强,这说明你很聪明,你在不自觉中使用这种做法。如果你能很明确的认识这一点,你的能力会更强。
    4.那么我们怎样预习呢?
    曰:“先说说学习的目标:(1)知道知识产生的背景,弄清知识形成的过程。
    (2)或早或晚的知道知识的地位和作用:(3)总结出认识问题的规律(或说出认识问题使用了以前的什么规律)。
    再说具体的做法:(1)对概念的理解。数学具有高度的抽象性。通常要借助具体的东西加以理解。有时借助字面的含义:有时借助其他学科知识。有时借助图形……理解概念的境界是意会。一定要在理解概念上下一番苦功夫后再做题。
    (2)对公式定理的预习,公式定理是使用最多的“规律”的总结。如:完全平方公式,勾股定理等。往往公式的推导定理的证明蕴含着丰富的数学方法及相当有用的解题规律。如三角形内角平分线定理的证明。我们应当先自己推导公式或证明定理,若做不成再参考别人的做法。无论是自己完成的,还是看别人的,都要说出这样做是怎样想出来的。
    (3)对于例题及习题的处理见上面的(2)及下面的第五条。