高二数学必考的知识点有多少


    在学习上,自己应该清楚运用什么方法学习各科知识对学习效果是最佳或最适合的。如果你在高二阶段还对自己的学习一头雾水,你在高二的学习就很容易出现事倍功半的效果。下面是小编给大家带来的高二数学必考的知识点,希望大家能够喜欢!
    高二数学必考的知识点1
    导数:导数的意义-导数公式-导数应用(极值最值问题、曲线切线问题)
    1、导数的定义:在点处的导数记作.
    2.导数的几何物理意义:曲线在点处切线的斜率
    ①k=f/(_0)表示过曲线y=f(_)上P(_0,f(_0))切线斜率。V=s/(t)表示即时速度。a=v/(t)表示加速度。
    3.常见函数的导数公式:①;②;③;
    ⑤;⑥;⑦;⑧。
    4.导数的四则运算法则:
    5.导数的应用:
    (1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;
    注意:如果已知为减函数求字母取值范围,那么不等式恒成立。
    (2)求极值的步骤:
    ①求导数;
    ②求方程的根;
    ③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;
    (3)求可导函数值与最小值的步骤:
    ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。
    高二数学必考的知识点2
    单调性
    ⑴若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。需代入驻点左右两边的数值求导数正负判断单调性。
    ⑵若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小于等于零。
    根据微积分基本定理,对于可导的函数,有:
    如果函数的导函数在某一区间内恒大于零(或恒小于零),那么函数在这一区间内单调递增(或单调递减),这种区间也称为函数的单调区间。导函数等于零的点称为函数的驻点,在这类点上函数可能会取得极大值或极小值(即极值可疑点)。进一步判断则需要知道导函数在附近的符号。对于满足的一点,如果存在使得在之前区间上都大于等于零,而在之后区间上都小于等于零,那么是一个极大值点,反之则为极小值点。
    _变化时函数(蓝色曲线)的切线变化。函数的导数值就是切线的斜率,绿色代表其值为正,红色代表其值为负,黑色代表值为零。
    凹凸性
    可导函数的凹凸性与其导数的单调性有关。如果函数的导函数在某个区间上单调递增,那么这个区间上函数是向下凹的,反之则是向上凸的。如果二阶导函数存在,也可以用它的正负性判断,如果在某个区间上恒大于零,则这个区间上函数是向下凹的,反之这个区间上函数是向上凸的。曲线的凹凸分界点称为曲线的拐点。
    高二数学必考的知识点3
    1.数列的函数理解:
    ①数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集N_或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。图像法;c.解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。③函数不一定有解析式,同样数列也并非都有通项公式。
    2.通项公式:数列的第N项an与项的序数n之间的关系可以用一个公式an=f(n)来表示,这个公式就叫做这个数列的通项公式(注:通项公式不)。
    数列通项公式的特点:
    (1)有些数列的通项公式可以有不同形式,即不。
    (2)有些数列没有通项公式(如:素数由小到大排成一列2,3,5,7,11,...)。
    3.递推公式:如果数列{an}的第n项与它前一项或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。
    数列递推公式特点:
    (1)有些数列的递推公式可以有不同形式,即不。
    (2)有些数列没有递推公式。
    有递推公式不一定有通项公式。
    注:数列中的项必须是数,它可以是实数,也可以是复数。