高二数学的知识点整合大全


    因为高二开始努力,所以前面的知识肯定有一定的欠缺,这就要求自己要制定一定的计划,更要比别人付出更多的努力,相信付出的汗水不会白白流淌的,收获总是自己的。下面是小编给大家带来的高二数学的知识点整合大全,以供大家参考!
    高二数学的知识点整合大全
    基本概念
    公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。
    公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。
    公理3:过不在同一条直线上的三个点,有且只有一个平面。
    推论1:经过一条直线和这条直线外一点,有且只有一个平面。
    推论2:经过两条相交直线,有且只有一个平面。
    推论3:经过两条平行直线,有且只有一个平面。
    公理4:平行于同一条直线的两条直线互相平行。
    等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。
    简单随机抽样的定义:
    一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样。
    简单随机抽样的特点:
    (1)用简单随机抽样从含有N个个体的总体中抽取一个容量为n的样本时,每次抽取一个个体时任一个体被抽到的概率为;在整个抽样过程中各个个体被抽到的概率为:
    (2)简单随机抽样的特点是,逐个抽取,且各个个体被抽到的概率相等;
    (3)简单随机抽样方法,体现了抽样的客观性与公平性,是其他更复杂抽样方法的基础。
    (4)简单随机抽样是不放回抽样;它是逐个地进行抽取;它是一种等概率抽样
    简单抽样常用方法:
    (1)抽签法:先将总体中的所有个体(共有N个)编号(号码可从1到N),并把号码写在形状、大小相同的号签上(号签可用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时每次从中抽一个号签,连续抽取n次,就得到一个容量为n的样本适用范围:总体的个体数不多时优点:抽签法简便易行,当总体的个体数不太多时适宜采用抽签法。
    (2)随机数表法:随机数表抽样“三步曲”:第一步,将总体中的个体编号;第二步,选定开始的数字;第三步,获取样本号码概率。
    高二数学必修五知识点:不等关系及不等式
    一、不等关系及不等式知识点
    1.不等式的定义
    在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号、、连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式.
    2.比较两个实数的大小
    两个实数的大小是用实数的运算性质来定义的,有a-baa-b=0a-ba0,则有a/baa/b=1a/ba
    3.不等式的性质
    (1)对称性:ab
    (2)传递性:ab,ba
    (3)可加性:aa+cb+c,ab,ca+c
    (4)可乘性:ab,cacb0,c0bd;
    (5)可乘方:a0bn(nN,n
    (6)可开方:a0
    (nN,n2).
    注意:
    一个技巧
    作差法变形的技巧:作差法中变形是关键,常进行因式分解或配方.
    一种方法
    待定系数法:求代数式的范围时,先用已知的代数式表示目标式,再利用多项式相等的法则求出参数,最后利用不等式的性质求出目标式的范围.
    高二下学期数学知识点归纳
    1.抛物线是轴对称图形。对称轴为直线
    x=-b/2a。
    对称轴与抛物线的交点为抛物线的顶点P。
    特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
    2.抛物线有一个顶点P,坐标为
    P(-b/2a,(4ac-b^2)/4a)
    当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。
    3.二次项系数a决定抛物线的开口方向和大小。
    当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
    |a|越大,则抛物线的开口越小。
    4.一次项系数b和二次项系数a共同决定对称轴的位置。
    当a与b同号时(即ab>0),对称轴在y轴左;
    当a与b异号时(即ab<0),对称轴在y轴右。
    5.常数项c决定抛物线与y轴交点。
    抛物线与y轴交于(0,c)
    6.抛物线与x轴交点个数
    Δ=b^2-4ac>0时,抛物线与x轴有2个交点。
    Δ=b^2-4ac=0时,抛物线与x轴有1个交点。
    Δ=b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)