初一数学期中知识点


    学习从来无捷径,循序渐进登高峰。如果说学习一定有捷径,那只能是勤奋,因为努力永远不会骗人。学习需要勤奋,做任何事情都需要勤奋。下面是小编给大家整理的一些初一数学的知识点,希望对大家有所帮助。
    
    七年级数学知识点
    生活中的轴对称
    1、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
    2、轴对称:对于两个图形,如果沿一条直线对折后,它们能互相重合,那么称这两个图形成轴对称,这条直线就是对称轴。可以说成:这两个图形关于某条直线对称。
    3、轴对称图形与轴对称的区别:轴对称图形是一个图形,轴对称是两个图形的关系。
    联系:它们都是图形沿某直线折叠可以相互重合。
    2、成轴对称的两个图形一定全等。
    3、全等的两个图形不一定成轴对称。
    4、对称轴是直线。
    5、角平分线的性质
    1、角平分线所在的直线是该角的对称轴。
    2、性质:角平分线上的点到这个角的两边的距离相等。
    6、线段的垂直平分线
    1、垂直于一条线段并且平分这条线段的直线叫做这条线段的垂直平分线,又叫线段的中垂线。
    2、性质:线段垂直平分线上的点到这条线段两端点的距离相等。
    7、轴对称图形有:
    等腰三角形(1条或3条)、等腰梯形(1条)、长方形(2条)、菱形(2条)、正方形(4条)、圆(无数条)、线段(1条)、角(1条)、正五角星。
    8、等腰三角形性质:
    ①两个底角相等。②两个条边相等。③“三线合一”。④底边上的高、中线、顶角的平分线所在直线是它的对称轴。
    9、①“等角对等边”∵∠B=∠C∴AB=AC
    ②“等边对等角”∵AB=AC∴∠B=∠C
    10、角平分线性质:
    角平分线上的点到角两边的距离相等。
    ∵OA平分∠CADOE⊥AC,OF⊥AD∴OE=OF
    11、垂直平分线性质:垂直平分线上的点到线段两端点的距离相等。
    ∵OC垂直平分AB∴AC=BC
    12、轴对称的性质
    1、两个图形沿一条直线对折后,能够重合的点称为对应点(对称点),能够重合的线段称为对应线段,能够重合的角称为对应角。2、关于某条直线对称的两个图形是全等图形。
    2、如果两个图形关于某条直线对称,那么对应点所连的线段被对称轴垂直平分。
    3、如果两个图形关于某条直线对称,那么对应线段、对应角都相等。
    13、镜面对称
    1.当物体正对镜面摆放时,镜面会改变它的左右方向;
    2.当垂直于镜面摆放时,镜面会改变它的上下方向;
    3.如果是轴对称图形,当对称轴与镜面平行时,其镜子中影像与原图一样;
    学生通过讨论,可能会找出以下解决物体与像之间相互转化问题的办法:
    (1)利用镜子照(注意镜子的位置摆放);(2)利用轴对称性质;
    (3)可以把数字左右颠倒,或做简单的轴对称图形;
    (4)可以看像的背面;(5)根据前面的结论在头脑中想象。
    初一下册数学重点知识点
    重要考点
    1、整式的乘除的公式运用(六条)及逆运用(数的计算)。
    (1)an·am2)(am)n=(3)(ab)n = 4)am ÷ an
    (5)a0 (a≠0) (6)a-p= =
    2、单项式与单项式、多项式相乘的法则。
    3、整式的乘法公式(两条)。
    平方差公式:(a+b)(a-b)=
    完全平方公式:(a+b)2 (a-b)2
    常用公式:(x+m)(x+n)=
    5、单项式除以单项式,多项式除以单项式(转换单项式除以单项式)。
    6、互为余角和互为补角和
    7、两直线平行的条件:(角的关系线的平行) ①相等,两直线平行;
    ② 相等,两直线平行;
    ③ 互补,两直线平行.
    8、平行线的性质:两直线平行。(线的平行
    9、能判别变量中的自变量和因变量,会列列关系式(因变量=自变量与常量的关系)
    10、变量中的图象法,注意:(1)横、纵坐标的对象。(2)起点、终点不同表示什么意义
    (3)图象交点表示什么意义(4)会求平均值。
    11、三角形(1)三边关系:角的关系)
    (2)内角关系:
    (3)三角形的三条重要线段:
    (重点)(4)三角形全等的判别方法:(注意:公共边、边的公共部分对顶角、公共角、角的公共部分)
    (5)全等三角形的性质:
    (重点)(6)等腰三角形:(a)知边求边、周长方法
    (b)知角求角方法
    (c)三线合一:
    初一下册数学复习资料
    概念知识
    1、单项式:数字与字母的积,叫做单项式。
    2、多项式:几个单项式的和,叫做多项式。
    3、整式:单项式和多项式统称整式。
    4、单项式的次数:单项式中所有字母的指数的和叫单项式的次数。
    5、多项式的次数:多项式中次数的项的次数,就是这个多项式的次数。
    6、余角:两个角的和为90度,这两个角叫做互为余角。
    7、补角:两个角的和为180度,这两个角叫做互为补角。
    8、对顶角:两个角有一个公共顶点,其中一个角的两边是另一个角两边的反向延长线。这两个角就是对顶角。
    9、同位角:在“三线八角”中,位置相同的角,就是同位角。
    10、内错角:在“三线八角”中,夹在两直线内,位置错开的角,就是内错角。
    11、同旁内角:在“三线八角”中,夹在两直线内,在第三条直线同旁的角,就是同旁内角。
    12、有效数字:一个近似数,从左边第一个不为0的数开始,到精确的那位止,所有的数字都是有效数字。
    13、概率:一个事件发生的可能性的大小,就是这个事件发生的概率。
    14、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
    15、三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
    16、三角形的中线:在三角形中连接一个顶点与它的对边中点的线段,叫做这个三角形的中线。
    17、三角形的高线:从一个三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
    18、全等图形:两个能够重合的图形称为全等图形。
    19、变量:变化的数量,就叫变量。
    20、自变量:在变化的量中主动发生变化的,变叫自变量。
    21、因变量:随着自变量变化而被动发生变化的量,叫因变量。
    22、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形。
    23、对称轴:轴对称图形中对折的直线叫做对称轴。
    24、垂直平分线:线段是轴对称图形,它的一条对称轴垂直于这条线段并且平分它,这样的直线叫做这条线段的垂直平分线。(简称中垂线)