高二数学知识点梳理总结


    知识掌握的巅峰,应该在一轮复习之后,也就是在你把所有知识重新捡起来之后。这样看来,应对高二这一变化的较优选择,是在高二还在学习新知识时,有意识地把高一内容从头捡起,自己规划进度,提前复习。下面是小编给大家带来的高二数学知识点梳理总结,以供大家参考!
    高二数学知识点梳理总结
    等差数列
    对于一个数列{an},如果任意相邻两项之差为一个常数,那么该数列为等差数列,且称这一定值差为公差,记为d;从第一项a1到第n项an的总和,记为Sn。
    那么,通项公式为,其求法很重要,利用了“叠加原理”的思想:
    将以上n-1个式子相加,便会接连消去很多相关的项,最终等式左边余下an,而右边则余下a1和n-1个d,如此便得到上述通项公式。
    此外,数列前n项的和,其具体推导方式较简单,可用以上类似的叠加的方法,也可以采取迭代的方法,在此,不再复述。
    值得说明的是,前n项的和Sn除以n后,便得到一个以a1为首项,以d/2为公差的新数列,利用这一特点可以使很多涉及Sn的数列问题迎刃而解。
    等比数列
    对于一个数列{an},如果任意相邻两项之商(即二者的比)为一个常数,那么该数列为等比数列,且称这一定值商为公比q;从第一项a1到第n项an的总和,记为Tn。
    那么,通项公式为(即a1乘以q的(n-1)次方,其推导为“连乘原理”的思想:
    a2=a1_,
    a3=a2_,
    a4=a3_,
    ````````
    an=an-1_,
    将以上(n-1)项相乘,左右消去相应项后,左边余下an,右边余下a1和(n-1)个q的乘积,也即得到了所述通项公式。
    此外,当q=1时该数列的前n项和Tn=a1_
    当q≠1时该数列前n项的和Tn=a1_1-q^(n))/(1-q).
    高二知识点数学总结摘要
    一、直线与方程
    (1)直线的倾斜角
    定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°
    (2)直线的斜率
    ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。
    ②过两点的直线的斜率公式:
    注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
    (2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
    (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
    (3)直线方程
    ①点斜式:直线斜率k,且过点
    注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。
    当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。
    ②斜截式:,直线斜率为k,直线在y轴上的截距为b
    ③两点式:()直线两点,
    ④截矩式:
    其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。
    ⑤一般式:(A,B不全为0)
    注意:各式的适用范围特殊的方程如:
    平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);
    (5)直线系方程:即具有某一共同性质的直线
    (一)平行直线系
    平行于已知直线(是不全为0的常数)的直线系:(C为常数)
    (二)垂直直线系
    垂直于已知直线(是不全为0的常数)的直线系:(C为常数)
    (三)过定点的直线系
    (ⅰ)斜率为k的直线系:,直线过定点;
    (ⅱ)过两条直线,的交点的直线系方程为
    (为参数),其中直线不在直线系中。
    (6)两直线平行与垂直
    当,时,;
    注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。
    (7)两条直线的交点
    相交
    交点坐标即方程组的一组解。
    方程组无解;方程组有无数解与重合
    (8)两点间距离公式:设是平面直角坐标系中的两个点,
    则
    (9)点到直线距离公式:一点到直线的距离
    (10)两平行直线距离公式
    在任一直线上任取一点,再转化为点到直线的距离进行求解。
    高二上册数学知识点分析大全
    1.不等式证明的依据
    (2)不等式的性质(略)
    (3)重要不等式:①|a|≥0;a2≥0;(a-b)2≥0(a、b∈R)
    ②a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)
    2.不等式的证明方法
    (1)比较法:要证明a>b(a0(a-b<0),这种证明不等式的方法叫做比较法.
    用比较法证明不等式的步骤是:作差——变形——判断符号.
    (2)综合法:从已知条件出发,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法.
    (3)分析法:从欲证的不等式出发,逐步分析使这不等式成立的充分条件,直到所需条件已判断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法.
    证明不等式除以上三种基本方法外,还有反证法、数学归纳法等.