初一数学课堂知识点


    天才就是勤奋曾经有人这样说过。如果这话不完全正确,那至少在很大程度上是正确的。学习,就算是天才,也是需要不断练习与记忆的。下面是小编给大家整理的一些初一数学的知识点,希望对大家有所帮助。
    
    初一数学重要知识点
    变量之间的关系
    一理论理解
    1、若Y随X的变化而变化,则X是自变量Y是因变量。
    自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量,数值保持不变的量叫做常量。
    3、若等腰三角形顶角是y,底角是x,那么y与x的关系式为y=180-2x.
    2、能确定变量之间的关系式:相关公式①路程=速度×时间②长方形周长=2×(长+宽)③梯形面积=(上底+下底)×高÷2④本息和=本金+利率×本金×时间。⑤总价=单价×总量。⑥平均速度=总路程÷总时间
    二、列表法:采用数表相结合的形式,运用表格可以表示两个变量之间的关系。列表时要选取能代表自变量的一些数据,并按从小到大的顺序列出,再分别求出因变量的对应值。列表法的特点是直观,可以直接从表中找出自变量与因变量的对应值,但缺点是具有局限性,只能表示因变量的一部分。
    三.关系式法:关系式是利用数学式子来表示变量之间关系的等式,利用关系式,可以根据任何一个自变量的值求出相应的因变量的值,也可以已知因变量的值求出相应的自变量的值。
    四、图像注意:a.认真理解图象的含义,注意选择一个能反映题意的图象;b.从横轴和纵轴的实际意义理解图象上特殊点的含义(坐标),特别是图像的起点、拐点、交点
    八、事物变化趋势的描述:对事物变化趋势的描述一般有两种:
    1.随着自变量x的逐渐增加(大),因变量y逐渐增加(大)(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而增加(大));
    2.随着自变量x的逐渐增加(大),因变量y逐渐减小(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而减小).
    注意:如果在整个过程中事物的变化趋势不一样,可以采用分段描述.例如在什么范围内随着自变量x的逐渐增加(大),因变量y逐渐增加(大)等等.
    九、估计(或者估算)对事物的估计(或者估算)有三种:
    1.利用事物的变化规律进行估计(或者估算).例如:自变量x每增加一定量,因变量y的变化情况;平均每次(年)的变化情况(平均每次的变化量=(尾数-首数)/次数或相差年数)等等;
    2.利用图象:首先根据若干个对应组值,作出相应的图象,再在图象上找到对应的点对应的因变量y的值;
    3.利用关系式:首先求出关系式,然后直接代入求值即可.
    初一下学期数学知识点
    相交线与平行线
    一、知识网络结构
    二、知识要点
    1、在同一平面内,两条直线的位置关系有两种:相交和平行,垂直是相交的一种特殊情况。
    2、在同一平面内,不相交的两条直线叫平行线。如果两条直线只有一个公共点,称这两条直线相交;如果两条直线没有公共点,称这两条直线平行。
    3、两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是
    邻补角。邻补角的性质:邻补角互补。如图1所示,与互为邻补角,
    与互为邻补角。+=180°;+=180°;+=180°;
    +=180°。
    4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的反向延长线,这样的两个角互为对顶角。对顶角的性质:对顶角相等。如图1所示,与互为对顶角。=;
    =。
    5、两条直线相交所成的角中,如果有一个是直角或90°时,称这两条直线互相垂直,
    其中一条叫做另一条的垂线。如图2所示,当=90°时,⊥。
    垂线的性质:
    性质1:过一点有且只有一条直线与已知直线垂直。
    性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
    性质3:如图2所示,当a⊥b时,====90°。
    点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。
    6、同位角、内错角、同旁内角基本特征:
    ①在两条直线(被截线)的同一方,都在第三条直线(截线)的同一侧,这样
    的两个角叫同位角。图3中,共有对同位角:与是同位角;
    与是同位角;与是同位角;与是同位角。
    ②在两条直线(被截线)之间,并且在第三条直线(截线)的两侧,这样的两个角叫内错角。图3中,共有对内错角:与是内错角;与是内错角。
    ③在两条直线(被截线)的之间,都在第三条直线(截线)的同一旁,这样的两个角叫同旁内角。图3中,共有对同旁内角:与是同旁内角;与是同旁内角。
    初一上册数学知识点归纳
    第一章有理数
    (一)正负数
    1.正数:大于0的数。
    2.负数:小于0的数。
    3.0即不是正数也不是负数。
    4.正数大于0,负数小于0,正数大于负数。
    (二)有理数
    1.有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π)
    2.整数:正整数、0、负整数,统称整数。
    3.分数:正分数、负分数。
    (三)数轴
    1.数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。)
    2.数轴的三要素:原点、正方向、单位长度。
    3.相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。
    4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。
    (四)有理数的加减法
    1.先定符号,再算绝对值。
    2.加法运算法则:同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。
    3.加法交换律:a+b=b+a两个数相加,交换加数的位置,和不变。
    4.加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
    5.a-b=a+(-b)减去一个数,等于加这个数的相反数。