九年级数学基本课文知识点


    知识是取之不尽,用之不竭的。只有限度地挖掘它,才能体会到学习的乐趣。任何一门学科的知识都需要大量的记忆和练习来巩固。虽然辛苦,但也伴随着快乐!下面是小编给大家整理的一些九年级数学的知识点,希望对大家有所帮助。
    2021九年级下册数学知识点归纳
    圆
    ★重点★①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的角的定理;④与圆有关的比例线段定理。
    ☆内容提要☆
    一、圆的基本性质
    1.圆的定义(两种)
    2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。
    3.“三点定圆”定理
    4.垂径定理及其推论
    5.“等对等”定理及其推论
    6.与圆有关的角:⑴圆心角定义(等对等定理)
    ⑵圆周角定义(圆周角定理,与圆心角的关系)
    ⑶弦切角定义(弦切角定理)
    二、直线和圆的位置关系
    1.切线的性质(重点)
    2.切线的判定定理(重点)
    3.切线长定理
    三、圆换圆的位置关系
    1.五种位置关系及判定与性质:(重点:相切)
    2.相切(交)两圆连心线的性质定理
    3.两圆的公切线:⑴定义⑵性质
    四、与圆有关的比例线段
    1.相交弦定理
    2.切割线定理
    五、与和正多边形
    1.圆的内接、外切多边形(三角形、四边形)
    2.三角形的外接圆、内切圆及性质
    3.圆的外切四边形、内接四边形的性质
    4.正多边形及计算
    中心角:初中数学复习提纲
    内角的一半:初中数学复习提纲(右图)
    (解Rt△OAM可求出相关元素,初中数学复习提纲、初中数学复习提纲等)
    六、一组计算公式
    1.圆周长公式
    2.圆面积公式
    3.扇形面积公式
    4.弧长公式
    5.弓形面积的计算方法
    6.圆柱、圆锥的侧面展开图及相关计算
    七、点的轨迹
    六条基本轨迹
    八、有关作图
    1.作三角形的外接圆、内切圆
    2.平分已知弧
    3.作已知两线段的比例中项
    4.等分圆周:4、8;6、3等分
    九、重要辅助线
    1.作半径
    2.见弦往往作弦心距
    3.见直径往往作直径上的圆周角
    4.切点圆心莫忘连
    5.两圆相切公切线(连心线)
    6.两圆相交公共弦
    初三下册数学知识点总结2021
    一、锐角三角函数
    正弦等于对边比斜边
    余弦等于邻边比斜边
    正切等于对边比邻边
    余切等于邻边比对边
    正割等于斜边比邻边
    二、三角函数的计算
    幂级数
    c0+c1x+c2x2+...+cnxn+...=∑cnxn(n=0..∞)
    c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n(n=0..∞)
    它们的各项都是正整数幂的幂函数,其中c0,c1,c2,...cn...及a都是常数,这种级数称为幂级数.
    泰勒展开式(幂级数展开法)
    f(x)=f(a)+f'(a)/1!.(x-a)+f''(a)/2!.(x-a)2+...f(n)(a)/n!.(x-a)n+...
    三、解直角三角形
    1.直角三角形两个锐角互余。
    2.直角三角形的三条高交点在一个顶点上。
    3.勾股定理:两直角边平方和等于斜边平方
    四、利用三角函数测高
    1、解直角三角形的应用
    (1)通过解直角三角形能解决实际问题中的很多有关测量问.
    如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.
    (2)解直角三角形的一般过程是:
    ①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).
    ②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.
    初三上册数学复习资料
    一、能正确理解实数的有关概念
    我们已经知道整数和统称为.并规定无限不循环是无理数,这样我们把有理数和无理数统称为实数,即实数这个大家庭里有有理数和无理数两大成员.学习时应注意分清有理数和无理数是两类完全不同的数,就是说如果一个数是有理数,那么它一定不是无理数,反之,如果一个数是无理数,那么它一定不是有理数.
    二、正确理解实数的分类
    实数的分类可从两个角度去思考,即(1)按定义来分类;(2)按正、来分类.但要注意0在实数里也扮演着重要角色.我们通常把正实数和0合称为非负数,把负实数和0合称为非正数.
    三、正确理解实数与数轴的关系
    实数与数轴上的点是一一对应的,就是说所有的实数都可以用数轴上的点来表示;反之,数轴上的每一个点都表示一个实数.数轴上的任一点表示的数,是有理数,就是无理数.
    在数轴上,表示相反数的两个点在原点的两旁,并且两点到原点的距离相等.实数a的绝对值就是在数轴上这个数对应的点与原点的距离.
    利用数轴可以比较任意两个实数的大小,即在数轴上表示的两个实数,绝对值大的反而小.
    四、熟练掌握实数的有关性质
    实数和有理数一样也有许多的重要性质.具体地讲可从以下几方面去思考:
    1,相反数实数a的相反数是-a,0的相反数是0,具体地,若a与b互为相反数,则a+b=0;反之,若a+b=0,则a与b互为相反数.
    2,绝对值一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数,0的绝对值是0.实数a的绝对值可表示就是说实数a的绝对值一定是一个非负数,
    3,倒数乘积为1的两个实数互为倒数,即若a与b互为倒数,则ab=1;反之,若ab=1,则a与b互为倒数.这里应特别注意的是0没有倒数.
    4,实数大小的比较任意两个实数都可以比较大小,正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.
    5,实数的运算实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.