初二数学知识点归纳下册


    对世界上的一切学问与知识的掌握也并非难事,只要持之以恒地学习,努力掌握规律,达到熟悉的境地,就能融会贯通,运用自如。学习需要持之以恒。下面是小编给大家整理的一些初二数学的知识点,希望对大家有所帮助。
    初二下册数学知识点归纳北师大版
    一、多边形
    1、多边形:由一些线段首尾顺次连结组成的图形,叫做多边形。
    2、多边形的边:组成多边形的各条线段叫做多边形的边。
    3、多边形的顶点:多边形每相邻两边的公共端点叫做多边形的顶点。
    4、多边形的对角线:连结多边形不相邻的两个顶点的线段叫做多边形的对角线。
    5、多边形的周长:多边形各边的长度和叫做多边形的周长。
    6、凸多边形:把多边形的任何一条边向两方延长,如果多边形的其他各边都在延长线所得直线的问旁,这样的多边形叫凸多边形。
    说明:一个多边形至少要有三条边,有三条边的叫做三角形;有四条边的叫做四边形;有几条边的叫做几边形。今后所说的多边形,如果不特别声明,都是指凸多边形。
    7、多边形的角:多边形相邻两边所组成的角叫做多边形的内角,简称多边形的角。
    8、多边形的外角:多边形的角的一边与另一边的反向延长线所组成的角叫做多边形的外角。
    注意:多边形的外角也就是与它有公共顶点的内角的邻补角。
    9、多边形内角和定理:n边形内角和等于(n-2)180°。
    10、多边形内角和定理的推论:n边形的外角和等于360°。
    说明:多边形的外角和是一个常数(与边数无关),利用它解决有关计算题比利用多边形内角和公式及对角线求法公式简单。无论用哪个公式解决有关计算,都要与解方程联系起来,掌握计算方法。
    初二数学三角形知识点
    【直角三角形】
    ◆备考兵法
    1.正确区分勾股定理与其逆定理,掌握常用的勾股数.
    2.在解决直角三角形的有关问题时,应注意以勾股定理为桥梁建立方程(组)来解决问题,实现几何问题代数化.
    3.在解决直角三角形的相关问题时,要注意题中是否含有特殊角(30°,45°,60°).若有,则应运用一些相关的特殊性质解题.
    4.在解决许多非直角三角形的计算与证明问题时,常常通过作高转化为直角三角形来解决.
    5.折叠问题是新中考热点之一,在处理折叠问题时,动手操作,认真观察,充分发挥空间想象力,注意折叠过程中,线段,角发生的变化,寻找破题思路.
    【三角形的重心】
    已知:△ABC中,D为BC中点,E为AC中点,AD与BE交于O,CO延长线交AB于F。求证:F为AB中点。
    证明:根据燕尾定理,S(△AOB)=S(△AOC),又S(△AOB)=S(△BOC),∴S(△AOC)=S(△BOC),再应用燕尾定理即得AF=BF,命题得证。
    重心的几条性质:
    1.重心和三角形3个顶点组成的3个三角形面积相等。
    2.重心到三角形3个顶点距离的平方和最小。
    3.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3纵坐标:(Y1+Y2+Y3)/3竖坐标:(Z1+Z2+Z3)/3
    4重心到顶点的距离与重心到对边中点的距离之比为2:1。
    5.重心是三角形内到三边距离之积的点。
    如果用塞瓦定理证,则极易证三条中线交于一点。
    初二数学学习方法
    1、配方法
    所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
    2、因式分解法
    因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
    3、换元法
    换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂4、判别式法与韦达定理
    一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
    韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
    5、待定系数法
    在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。
    6、构造法
    在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。