高三重要数学知识点梳理


    与高一高二不同之处在于,此时复习力学部分知识是为了更好的与高考考纲相结合,尤其水平中等或中等偏下的学生,此时需要进行查漏补缺,但也需要同时提升能力,填补知识、技能的空白。下面是小编给大家带来的高三重要数学知识点梳理,以供大家参考!
    高三重要数学知识点梳理
    轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的.点必在轨迹上,这叫做轨迹的完备性(也叫做充分性)。
    一、求动点的轨迹方程的基本步骤。
    1.建立适当的坐标系,设出动点M的坐标;
    2.写出点M的集合;
    3.列出方程=0;
    4.化简方程为最简形式;
    5.检验。
    二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
    1.直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
    2.定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
    3.相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
    4.参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
    5.交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
    求动点轨迹方程的一般步骤:
    ①建系——建立适当的坐标系;
    ②设点——设轨迹上的任一点P(x,y);
    ③列式——列出动点p所满足的关系式;
    ④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;
    ⑤证明——证明所求方程即为符合条件的动点轨迹方程。
    分享高三数学知识点整理
    ①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高)。
    ②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形。
    ⑶特殊棱锥的顶点在底面的射影位置:
    ①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心。
    ②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心。
    ③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心。
    ④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心。
    ⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心。
    ⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心。
    ⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;
    ⑧每个四面体都有内切球,球心
    是四面体各个二面角的平分面的交点,到各面的距离等于半径。
    [注]:i。各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥。(×)(各个侧面的等腰三角形不知是否全等)
    ii。若一个三角锥,两条对角线互相垂直,则第三对角线必然垂直。
    简证:AB⊥CD,AC⊥BD
    BC⊥AD。令得,已知则。
    iii。空间四边形OABC且四边长相等,则顺次连结各边的中点的四边形一定是矩形。
    iv。若是四边长与对角线分别相等,则顺次连结各边的中点的四边是一定是正方形。
    简证:取AC中点,则平面90°易知EFGH为平行四边形
    EFGH为长方形。若对角线等,则为正方形。
    高三数学复习知识点必修三
    1.定义:
    用符号〉,=,〈号连接的式子叫不等式。
    2.性质:
    ①不等式的两边都加上或减去同一个整式,不等号方向不变。
    ②不等式的两边都乘以或者除以一个正数,不等号方向不变。
    ③不等式的两边都乘以或除以同一个负数,不等号方向相反。
    3.分类:
    ①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。
    ②一元一次不等式组:
    a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。
    b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
    4.考点:
    ①解一元一次不等式(组)
    ②根据具体问题中的数量关系列不等式(组)并解决简单实际问题
    ③用数轴表示一元一次不等式(组)的解集