高中数学重点知识点最新


    高中数学新课程的改革,任重而道远。推进此改革,是目前教育改革和发展的一项重要任务。那么你知道高中数学重点知识点有哪些吗?这次小编给大家整理了高中数学重点知识点,供大家阅读参考。
    
    目录
    高中数学重点知识点
    高中数学知识点总结
    高考数学复习重点总结
    高中数学重点知识点
    (一)
    1.对于函数f(x),如果对于定义域内任意一个x,都有f(-x)=-f(x),那么f(x)为奇函数;
    2.对于函数f(x),如果对于定义域内任意一个x,都有f(-x)=f(x),那么f(x)为偶函数;
    3.一般地,对于函数y=f(x),定义域内每一个自变量x,都有f(a+x)=2b-f(a-x),则y=f(x)的图象关于点(a,b)成中心对称;
    4.一般地,对于函数y=f(x),定义域内每一个自变量x都有f(a+x)=f(a-x),则它的图象关于x=a成轴对称。
    5.函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;
    6.由函数奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).
    (二)
    一、充分条件和必要条件
    当命题“若A则B”为真时,A称为B的充分条件,B称为A的必要条件。
    二、充分条件、必要条件的常用判断法
    1.定义法:判断B是A的条件,实际上就是判断B=>A或者A=>B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义判断即可
    2.转换法:当所给命题的充要条件不易判断时,可对命题进行等价装换,例如改用其逆否命题进行判断。
    3.集合法
    在命题的条件和结论间的关系判断有困难时,可从集合的角度考虑,记条件p、q对应的集合分别为A、B,则:
    三、知识扩展
    1.四种命题反映出命题之间的内在联系,要注意结合实际问题,理解其关系(尤其是两种等价关系)的产生过程,关于逆命题、否命题与逆否命题,也可以叙述为:
    (1)交换命题的条件和结论,所得的新命题就是原来命题的逆命题;
    (2)同时否定命题的条件和结论,所得的新命题就是原来的否命题;
    (3)交换命题的条件和结论,并且同时否定,所得的新命题就是原命题的逆否命题。
    2.由于“充分条件与必要条件”是四种命题的关系的深化,他们之间存在这密切的联系,故在判断命题的条件的充要性时,可考虑“正难则反”的原则,即在正面判断较难时,可转化为应用该命题的逆否命题进行判断。
    一个结论成立的充分条件可以不止一个,必要条件也可以不止一个。
    <<<返回目录
    高中数学知识点总结
    反比例函数
    形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。
    自变量x的取值范围是不等于0的一切实数。
    反比例函数图像性质:
    反比例函数的图像为双曲线。
    由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。
    另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。
    上面给出了k分别为正和负(2和-2)时的函数图像。
    当K>0时,反比例函数图像经过一,三象限,是减函数
    当K<0时,反比例函数图像经过二,四象限,是增函数
    反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。
    知识点:
    1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。
    2.对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。
    (加一个数时向左平移,减一个数时向右平移)
    <<<返回目录
    高考数学复习重点总结
    第一,高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节
    主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。
    第二,平面向量和三角函数
    重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。
    第三,数列
    数列这个板块,重点考两个方面:一个通项;一个是求和。
    第四,空间向量和立体几何
    在里面重点考察两个方面:一个是证明;一个是计算。
    第五,概率和统计
    这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一……等可能的概率,第二………事件,第三是独立事件,还有独立重复事件发生的概率。
    第六,解析几何
    这是我们比较头疼的问题,是整个试卷里难度比较大,计算量的题,当然这一类题,我总结下面五类常考的题型,包括第一类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应该掌握它的通法,第二类我们所讲的动点问题,第三类是弦长问题,第四类是对称问题,这也是2008年高考已经考过的一点,第五类重点问题,这类题时往往觉得有思路,但是没有答案,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。
    第七,押轴题
    考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点。
    <<<返回目录