高二数学必修二知识点总结


    经常不断地学习,你就什么都知道。你知道得越多,你就越有力量。下面给大家带来一些关于高二数学必修二知识点总结,希望对大家有所帮助。
    高二数学必修二知识点1
    立体几何初步
    1、柱、锥、台、球的结构特征
    (1)棱柱:
    几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.
    (2)棱锥
    几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.
    (3)棱台:
    几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点
    (4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成
    几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形.
    (5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成
    几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形.
    (6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成
    几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形.
    (7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体
    几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径.
    2、空间几何体的三视图
    定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、
    俯视图(从上向下)
    注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度.
    3、空间几何体的直观图——斜二测画法
    斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;
    ②原来与y轴平行的线段仍然与y平行,长度为原来的一半.
    4、柱体、锥体、台体的表面积与体积
    (1)几何体的表面积为几何体各个面的面积的和.
    (2)特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线)
    (3)柱体、锥体、台体的体积公式
    高二数学必修二知识点2
    直线与方程
    (1)直线的倾斜角
    定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α<180°
    (2)直线的斜率
    ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示.即.斜率反映直线与轴的倾斜程度.
    当时,;当时,;当时,不存在.
    ②过两点的直线的斜率公式:
    注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
    (2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
    (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.
    (3)直线方程
    ①点斜式:直线斜率k,且过点
    注意:当直线的斜率为0°时,k=0,直线的方程是y=y1.
    当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.
    ②斜截式:,直线斜率为k,直线在y轴上的截距为b
    ③两点式:()直线两点,
    ④截矩式:
    其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.
    ⑤一般式:(A,B不全为0)
    注意:各式的适用范围特殊的方程如:
    (4)平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);
    (5)直线系方程:即具有某一共同性质的直线
    (一)平行直线系
    平行于已知直线(是不全为0的常数)的直线系:(C为常数)
    (二)垂直直线系
    垂直于已知直线(是不全为0的常数)的直线系:(C为常数)
    (三)过定点的直线系
    (ⅰ)斜率为k的直线系:,直线过定点;
    (ⅱ)过两条直线,的交点的直线系方程为
    (为参数),其中直线不在直线系中.
    (6)两直线平行与垂直
    注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否.
    (7)两条直线的交点
    相交
    交点坐标即方程组的一组解.
    方程组无解;方程组有无数解与重合
    (8)两点间距离公式:设是平面直角坐标系中的两个点
    (9)点到直线距离公式:一点到直线的距离
    (10)两平行直线距离公式
    在任一直线上任取一点,再转化为点到直线的距离进行求解.
    高二数学必修二知识点3
    圆的方程
    1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.
    2、圆的方程
    (1)标准方程,圆心,半径为r;
    (2)一般方程
    当时,方程表示圆,此时圆心为,半径为
    当时,表示一个点;当时,方程不表示任何图形.
    (3)求圆方程的方法:
    一般都采用待定系数法:先设后求.确定一个圆需要三个独立条件,若利用圆的标准方程,
    需求出a,b,r;若利用一般方程,需要求出D,E,F;
    另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置.
    高二数学必修二知识点4
    直线与圆的位置关系:
    直线与圆的位置关系有相离,相切,相交三种情况:
    (1)设直线,圆,圆心到l的距离为,则有;;
    (2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】
    (3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2
    4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.
    设圆,
    两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.
    当时两圆外离,此时有公切线四条;
    当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;
    当时两圆相交,连心线垂直平分公共弦,有两条外公切线;
    当时,两圆内切,连心线经过切点,只有一条公切线;
    当时,两圆内含;当时,为同心圆.
    注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线
    5、空间点、直线、平面的位置关系
    公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内.
    应用:判断直线是否在平面内
    用符号语言表示公理1:
    公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线
    符号:平面α和β相交,交线是a,记作α∩β=a.
    符号语言:
    公理2的作用:
    ①它是判定两个平面相交的方法.
    ②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点.
    ③它可以判断点在直线上,即证若干个点共线的重要依据.
    公理3:经过不在同一条直线上的三点,有且只有一个平面.
    推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面.
    公理3及其推论作用:①它是空间内确定平面的依据②它是证明平面重合的依据
    公理4:平行于同一条直线的两条直线互相平行
    高二数学必修二知识点总结